
Styled to Steal: The Overlooked Attack Surface in Email Clients
Leon Trampert

leon.trampert@cispa.de
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

Daniel Weber
daniel.weber@cispa.de

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Christian Rossow
rossow@cispa.de

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Michael Schwarz
michael.schwarz@cispa.de

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

Abstract
Email is still a widely used communication medium, particularly
in professional contexts. Standards such as OpenPGP and S/MIME
offer encryption while maintaining compatibility with existing in-
frastructure. Within the end-to-end encryption threat model, email
servers are untrusted, which creates opportunities for attackers to
inject malicious HTML or CSS into encrypted emails—either live
during email transport, or by re-sending leaked emails.

In this paper, we show that isolation mechanisms in widely
used email client software remain inadequate. We present a novel
scriptless attack that extracts arbitrary plaintext from encrypted
emails using only CSS without requiring JavaScript. Once the email
is opened, three benign-looking CSS features—container queries,
lazy-loaded web fonts, and contextual font ligatures—map each
character of the ciphertext-carried plaintext to a unique network
request to the attacker’s server. This attack technique can incre-
mentally reconstruct the entire plaintext in a single rendering pass,
with no JavaScript, no visual artifacts, and depending on the config-
uration, even without any user interaction. The technique differs
considerably from prior work: it achieves complete plaintext re-
covery without script execution, evades state-of-the-art sanitizers
such as DOMPurify, and succeeds across multiple browser engines.
We demonstrate the severity of this threat on Mozilla Thunderbird
and KMail, with end-to-end attacks successfully exfiltrating PGP-
encrypted text from an email rendered in the latest version of the
respective clients. Furthermore, we show that our technique affects
code integrity tools and sanitization techniques reused in software
stacks, including Meta’s Code Verify. Our findings led to practical
mitigations in Thunderbird, as well as a revision of Meta’s threat
model to include CSS. These results underline the need for robust
content isolation in email client software and challenge the as-
sumption that existing mitigations fully prevent encrypted content
leakage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765189

CCS Concepts
• Security and privacy → Web application security; Software
security engineering.

Keywords
Email Client; PGP; CSS; Content Exfiltration

ACM Reference Format:
Leon Trampert, Daniel Weber, Christian Rossow, and Michael Schwarz.
2025. Styled to Steal: The Overlooked Attack Surface in Email Clients. In
Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765189

1 Introduction
Despite the widespread availability of secure end-to-end encrypted
messaging applications, email remains a popular and widely used
communication medium, especially in professional settings. While
emails are typically transferred over TLS-encrypted connections
from hop to hop, every email server involved in email delivery
sees email contents in plain [13]. As a result, two popular end-to-
end encryption standards, OpenPGP [3] and S/MIME [49], have
emerged to protect email content. These technologies are fully
backward compatible with existing email infrastructure, allowing
users to send encrypted emails via any email server. In particular,
inline PGP remains popular, as it allows users to send encrypted
emails even when the recipient’s email client does not support PGP
natively [42]. This is achieved by embedding the PGP-encrypted
content directly in the email body.

Within the threat model of end-to-end encryption, only the
sender and recipient, with their respective email clients, are trusted
parties. Importantly, no involved email server has to be trusted. The
email can be intercepted and modified by malicious parties, such
as email providers, ISPs, or even state actors. This allows for mali-
cious parties to inject untrusted content into the email body, which
the email client of the recipient then renders. Moreover, leaked
encrypted emails can be resent to the original recipient, containing
the encrypted content with additional injected untrusted content.
Such untrusted content can include HTML and CSS, which are
commonly used to format emails. We refer to an email containing
encrypted content and untrusted parts as a mixed-context email.

In 2018, the Efail attack [39] demonstrated a direct content-
exfiltration attack, where specifically crafted HTML injected by an
attacker tricks the parser into including the decrypted PGP content

https://orcid.org/0009-0001-6891-965X
https://orcid.org/0009-0008-0213-5773
https://orcid.org/0000-0003-2470-8444
https://orcid.org/0000-0001-6744-3410
https://doi.org/10.1145/3719027.3765189
https://doi.org/10.1145/3719027.3765189

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

as part of a URL fetched from an attacker-controlled server, leaking
the content to the attacker. In response to this attack that affected at
least five widely used email clients, including Mozilla Thunderbird
and Apple Mail, the security community has focused on preventing
direct content exfiltration attacks. However, we argue that Efail is
merely an instance of a more general class of attacks that exploit
the lack of isolation between untrusted and trusted content.

In this paper, we revisit the attack surface from a “CSS-only”
angle and answer the following research questions:Have the miti-
gations against direct content exfiltration attacks fully closed
the attack surface for content exfiltration attacks in email
clients? Can we still mount attacks using only HTML and
CSS that undermine email encryption in a single rendering
pass, i.e., when simply opening an email?

We systematically analyze the current behavior of email clients
when rendering mixed-context emails. We find that while a direct
content-exfiltration attack, as in Efail, is no longer possible, at least
three widely used PGP-enabled email clients (Mozilla Thunder-
bird, KMail, and Apple Mail with the GPGSuite plugin) still allow
untrusted stylesheets to be applied to PGP-encrypted content, show-
ing a lack of isolation. Control over stylesheets is often ignored
or regarded as low-severity issues [40, 41], with existing scriptless
(CSS-based) attacks being tailored to the web (i.e., browser) setting.
Existing attacks primarily focus on leaking HTML attributes, such
as anti-CSRF tokens or the values of input fields [17, 21], but not
text. While there are some attacks that are capable of leaking text
to some extent, they do not apply to the email context. Existing
approaches typically rely on repeated interactions, scrollbars, or
browser-specific features, making them unsuitable for universally
applicable real-world scenarios, such as email client exploitation.

Thus, to answer the second research question, we introduce a
novel scriptless attack using only CSS. Our proposed attack allows
an attacker to exfiltrate arbitrary text from an encrypted email
via the following four steps. (1) The attacker crafts a message con-
taining the encrypted text for the recipient, combined with HTML
and CSS. (2) Upon opening, the client renders the payload, i.e., de-
crypts the ciphertext and applies the attacker-provided stylesheet.
(3) Three standard CSS features—container queries, lazy-loaded web
fonts, and contextual ligatures—encode each plaintext character to
a unique request for a remote image to the attacker server. (4) The
loading of remote images incrementally leaks the entire plaintext
during a single rendering pass. The technique neither shows visual
artifacts nor triggers warnings, yet recovers arbitrary text.

At the core, we apply fonts with specifically crafted ligatures to
the targeted text inspired by attacks against browsers [26, 29, 37].
If the defined ligature matches the content of the targeted text, it
applies a unique width to the text, which we can measure purely in
CSS. This still poses the major challenge of how to leak arbitrary
content in a single shot. To tackle this challenge, we leverage CSS
animations to repeatedly apply fonts with different ligatures with-
out having to reload the content or open the email multiple times.
Consequently, we can recover arbitrary text character-by-character
and exfiltrate it via character-dependent remote-resource loading.
By relying on lazy font loading, we can dynamically craft fonts
with the required ligatures based on the already extracted text parts.
Thus, we do not require large fonts, allowing us to stay within the
practical limits of fonts.

Our attack introduces three critical innovations compared to pre-
vious variants. First, we introduce a novel mechanism leveraging
CSS animations and lazy-loading fonts, enabling the incremental
extraction of arbitrary plaintext content without multiple injections
or user interactions, which is not possible with previous CSS-based
attacks [18, 19, 26, 29, 37]. Second, unlike previous attacks requiring
browser-specific features [18, 26, 29, 37], our approach relies exclu-
sively on regular CSS container queries–a recently standardized CSS
feature universally supported by all modern browser engines and
multiple email clients. Third, we propose an adaptive, server-side
font generation method that dynamically builds ligatures based on
previously leaked characters, enabling the practical and efficient ex-
traction of arbitrary-length text despite inherent font limitations. The
approach differs significantly from prior scriptless techniques: it
needs no script execution, achieves full plaintext recovery instead of
only HTML-attribute recovery, works across multiple email clients,
and can even evade popular sanitizers such as DOMPurify because
the injected CSS is fully standard-compliant.

To demonstrate the security implications and severity of our
attack, we conduct end-to-end attacks to fully recover the content
of end-to-end encrypted emails. The victim only needs to open
a single email, from which we can reliably extract the decrypted
content at a rate of 2 B/s for arbitrary text and instantly for text
in a known format (e.g., credit card numbers). The attack is fully
stealthy, running in the background without any visual clue for the
victim. Even worse, the attack is applicable to an email client that
was previously unaffected by Efail’s direct exfiltration attack. This
highlights that the mitigations against direct content-exfiltration
attacks are insufficient to prevent all types of content exfiltration.

While not our primary focus, our technique also affects state-
of-the-art defenses against malicious content exfiltration in web
applications. First, the recent academic proposals [14] and indus-
try implementations [27] regarding the concept of Accountable
JavaScript aim to vet JavaScript code. While initially targeting only
JavaScript, Meta acknowledged the security impact of our attacks
and extended their Code Verify browser extension [27, 28] to verify
the integrity of JavaScript and CSS. Thus, our attack shows an over-
sight in the threat model of these defenses in that they focus only
on JavaScript and not CSS, undermining the security guarantees.

Second, HTML sanitizers aim to filter untrusted user input before
inserting it into the DOM [20]. For example, the popular DOMPu-
rify [20] sanitization library can be used to prevent DOM-based XSS.
Such HTML sanitization libraries do not protect against scriptless
attacks in their default configuration, allowing attackers to leak
web content. As such, the attack is highly relevant to sites that may
not be susceptible to XSS but still allow style injection. This can be
due to sanitization or a strict script-restricting CSP.

Finally, to defend against our attacks, we discuss concrete miti-
gation strategies. For emails, we suggest restricting remote content
and strict content isolation between trusted and untrusted content.
We advocate for stricter default configurations in sanitization li-
braries. However, we fear that this only happens when there is
sufficient awareness of the severity of these novel types of attacks.

To summarize, we make the following contributions:
(1) We systematically analyze the current behavior of email

clients when rendering mixed-context emails.

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

(2) We present a CSS-based scriptless attack that fully recovers
arbitrary plaintext from encrypted emails, not just HTML
attributes or short tokens.

(3) We present end-to-end exploits to recover the content of
PGP-encrypted emails in Mozilla Thunderbird and KMail.

(4) We present a proof-of-concept exploit against Meta’s Code
Verify implementation of Accountable JavaScript. Meta con-
sequently updated their implementation to also verify CSS.

(5) We showcase that the HTML Sanitizer DOMPurify does not
mitigate our scriptless attacks in its default configuration.

Outline. Section 2 provides background. In Section 3, we in-
troduce the threat model. Section 4 systematically analyzes email
clients’ rendering behavior for mixed-context emails. Section 5
presents an overview of our novel attack. Section 6 discusses its
implementation. In Section 7, we present our real-world exploit
on Mozilla Thunderbird. In Section 8, we discuss mitigation ap-
proaches. Section 9 demonstrates the applicability of our scriptless
attack on the web. Finally, we discuss our results in Section 10.

Responsible Disclosure. We disclosed our findings regarding
Thunderbird, KMail, and Apple Mail with the GPGSuite plugin to
Mozilla, KDE, and GPGTools & Apple, respectively. Mozilla will
issue a fix for Thunderbird in the next stable release. The vendor
response from GPGTools indicates that the client is not exploitable.
Meanwhile, KDE has acknowledged the issue and plans to fix it in
an upcoming release. Furthermore, we have discussed the gap in the
default configuration of DOMPurify and Firefox’s HTML Sanitizer
API with the respective maintainers. While they acknowledge the
issue, they do not plan on changing the default configuration. Lastly,
Meta has extended the threat model of the Code Verify extension
to account for CSS as a response to our findings.

Availability. Our artifact is available on GitHub at https://
github.com/cispa/stylemail. Furthermore, it is archived at Zenodo
with the DOI: https://doi.org/10.5281/zenodo.17019769.

2 Background
In this section, we provide the necessary background. We provide
a brief overview of end-to-end encryption in the context of emails.
Additionally, introduce the modern font formats TrueType and
OpenType and their relevant features.

2.1 End-to-end Encrypted Email
While emails are typically transferred over TLS-encrypted connec-
tions from hop to hop, every email server involved in email delivery
sees email contents in plaintext [13]. In 1991, Phil Zimmerman in-
vented PGP (Pretty Good Privacy) encryption, later standardized
as OpenPGP by the IETF [3]. It provides cryptographic privacy and
authentication to ensure that email servers (e.g., of the sender’s
or recipient’s email provider) cannot break the confidentiality or
integrity of emails. Each communication party has a private and
public key. The public key is used for encryption and signature
validation, and the private key is used for decrypting and signing.

Structure. Generally, emails are structured with a header and
body. The body contains the message content, which can be plain
text, HTML, or a combination of other types. The type of content
is specified in the header using MIME (Multipurpose Internet Mail
Extensions) types [45]. When an email contains multiple types of

content, such as text and attachments, it uses the multipart MIME
format. This format divides the email into parts, each with its own
MIME-type header. A commonmultipart type is multipart/mixed,
which allows for specifying independent parts of different types. A
boundary string separates each part of a multipart email.

PGP in Email. There are two main techniques to include PGP-
encrypted content in emails. First, with PGP/Inline [42], the email
body directly contains the PGP-encrypted data. The body is usually
of type text/plain and occasionally text/html. The approach is
usually only used to encrypt text and is regularly used with clients
that do not natively support PGP, as it allows for easy interoperabil-
ity with plugins. An example of a third-party extension that lever-
ages PGP/Inline is theMailvelope browser extension, which enables
PGP encryption, e.g., on gmail.com. Second, with PGP/MIME [42],
the email body has the MIME type multipart/encrypted. It con-
tains an entire email body, including, e.g., attachments, and allows
for encrypting arbitrary MIME types. While PGP/MIME is preferred
over PGP/Inline, it is not universally supported.

2.2 Fonts
Fonts are crucial for HTML rendering in both email clients and
browsers. Modern font formats, such as TrueType [2] and Open-
Type [30], utilize outline-based representations to map characters
to visual forms. These formats define each character using mathe-
matical descriptions of lines and curves, ensuring scalability across
different sizes and resolutions. Generally, fonts are shipped as files
that contain tables that map characters to their visual represen-
tation, also known as glyphs. Content providers frequently ship
custom fonts to ensure a consistent visual appearance of their con-
tent. Notably, web developers may use the @font-face CSS rule to
load custom fonts from a remote server [6].

TrueType and OpenType. TrueType is a font format initially de-
veloped by Apple and Microsoft in the late 1980s. It is widely used
for both screen and print applications. OpenType is a successor of
TrueType and PostScript Type 1 font formats [31]. It was introduced
in 1996 by Microsoft and Adobe Systems and supports advanced
typographic features, such as ligatures. TrueType has been partially
extended to support OpenType features, such as ligatures. Both
formats are widely used on the web and universally supported.

Font Ligatures. Ligatures map two or more characters to a sin-
gle glyph [1]. In OpenType, there are different types of ligatures,
such as standard, discretionary, and contextual ligatures. The for-
mer only leverages the preceding characters, while the latter two
can be context-dependent with their built-in conditional logic [1].
Ligatures are often used to improve the visual appearance of text,
such as combining characters that would otherwise overlap or be
far apart. For example, the characters f and i are represented by a
single glyph, fi, which moves their individual representations closer
together. Ligatures are crucial for many languages, such as Arabic,
where the shape of a character depends on its position [57].

3 Threat Model
In our threat model, an attacker aims to recover the content of an
encrypted email. We assume the attacker can access such encrypted
emails (e.g., from leaked emails or as a malicious party involved in

https://github.com/cispa/stylemail
https://github.com/cispa/stylemail
https://doi.org/10.5281/zenodo.17019769

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

From: Alice
To: Bob

–BEGIN PGP MESSAGE–
ENCRYPTED
–END PGP MESSAGE–

(a) Alice encrypts a secret message
with Bob’s public key.

From: Alice
To: Bob

<html>
<style>...</style>

–BEGIN PGP MESSAGE–
ENCRYPTED
–END PGP MESSAGE–

</html>

(b) The attacker adds a malicious
stylesheet to the email.

From: Alice
To: Bob

<html>
<style>...</style>

SECRET MESSAGE

</html>

(c) Bob opens the email, decrypts
and renders the message.

(d) Network requests leak the de-
crypted content (see Figure 2).

Attacker
intercepts email

Attacker
sends email

GET /leak1?c=S

GET /leak2?c=E

GET /leak3?c=C

Email Client

Figure 1: The end-to-end workflow of our attack. The attacker obtains a PGP-encrypted email. They then add a malicious
stylesheet to the email. Upon opening the email, the victim’s client decrypts and renders the email. The malicious stylesheet
and decrypted content are rendered in the same context, which allows for exfiltrating the content via network requests.

sending or receiving emails). Note that in the first case, the attacker
does not have control over an email server. Moreover, the attacker
knows the intended recipient of the email, i.e., the victim. Without
altering the encrypted block, the attacker wraps the original email
inside a new HTML email, augments the message with arbitrary
standard-compliant CSS, and sends this composite to the victim.
We assume the victim opens the attacker’s email at least once, for
the email client to decrypt and render the email content. Modern
email clients can decrypt and render such content automatically
when the user opens the message, creating amixed context in which
trusted plaintext is processed together with untrusted markup.

Fundamentally, the attacker can only inject CSS and HTML, and
no JavaScript. The attacker has no code execution on the victim’s
system, and does not rely on classic software vulnerabilities [51].
Moreover, the attacker does not exploit any bug in the client but
only relies on the lack of isolation between trusted and untrusted
content. Our threat model largely follows the one of prior work [39].

Scenario. Figure 1 illustrates the concrete steps for an attack.
Alice writes Bob a PGP-encrypted email. An attacker who can ob-
tain Alice’s email, e.g., on any involved email server, cannot read
the plaintext but modify the email before delivering it to Bob, and
thus inject a malicious stylesheet into the email. Bob receives and
opens the email, which is then rendered by his email client (e.g.,
Mozilla Thunderbird). The email client decrypts the PGP-encrypted
message and renders it in the same context, i.e., document, as the
malicious stylesheet. Depending on the email client and Bob’s set-
tings, this step may require Bob to press a button to decrypt the
message. The attacker-controlled stylesheet is now applied to the
decrypted content and can make network requests that depend on
the decrypted content. The attacker receives those requests on their
web server and can thereby infer the decrypted content. There is
no visual indication for Bob that the decrypted content is leaked,
and the stylesheet can present decoy content, making it indistin-
guishable from a regular email. The content of the stylesheet that
actually leaks the decrypted content is presented in Section 5.

Note that the attacker does not have to control the email server
but can also leverage emails that have been obtained by other means
(e.g., data leaks) and resend them to the victim.

4 Systematic Investigation of Email Clients
In this section, we present a framework for testing the susceptibility
of email clients to a lack of isolation between the decrypted and

untrusted content. We systematically analyze PGP-compliant email
clients. For each desktop platform, we select the most popular PGP-
compliant email client and test the latest version available at the
time of writing (cf. Appendix D for a table of tested clients). Each
client is tested on a fresh installation with default settings.

4.1 Payload Construction and Evaluation
To test the susceptibility of an email client, we devise a broad range
of test cases. Most importantly, the email client has to support
PGP encryption, HTML emails, and remote content. We focus on
HTML emails, as they provide the greatest attack surface and have
been shown to be susceptible to a lack of isolation [39]. Further-
more, not every email client allows the same methods for including
stylesheets. For each requirement of the vulnerability, we construct
several emails that make use of the respective feature. Feature
support is determined based on the visual rendering of the email.
As an example, to test the support for web fonts, we construct
emails that include web fonts and some text that is styled using
the web font. We test different inclusion methods, such as inline
stylesheets, remote stylesheets, and data URLs. In total, we end up
with 5 test cases for this feature. Each test case is then sent to each
email client, where the email is opened manually and the visual
rendering is inspected. For testing the support of remote content,
we use remote images that are loaded via the tag and the
background-image CSS property.

First, we test for the support of inline stylesheets defined via
<style>. We test the <link> tag with an https:// remote URL
and a data URL in case remote content is treated differently. While
the <base> tag cannot be used directly to include stylesheets, it can
be used to redirect relative URLs of existing stylesheet inclusions
to an attacker-controlled server. Furthermore, prior research has
shown that CSS feature availability is inconsistent across email
clients [55]. We test the support of top-level stylesheets and the
availability of at-rules, such as @font-face and @container since
they indicate a broader support for CSS features that can be used
for attacks. To test a CSS feature, we construct an HTML email
that uses the feature for each inclusion method. We also examine
recursive imports via the @import directive [55]. Each email is then
opened using the tested client. Feature support is determined based
on the visual rendering of the email.

In the context of end-to-end encrypted emails, a mixed context
refers to a scenario where encrypted and unencrypted content are

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

present within the same email thread. It enables the exfiltration of
the decrypted content using our scriptless attack. To test susceptibil-
ity, our framework leverages three PGP setups for detecting a mixed
context, two targeting PGP/Inline and one PGP/MIME. The first
setup directly features a body of the MIME type text/html that
contains PGP-encrypted content. The second setup uses Content-
Type: multipart/mixed and contains two separate parts. One
part is again HTML, while the other is plaintext (i.e., MIME type
text/plain) and contains the PGP-encrypted content. This setup
is designed to target clients that block PGP/Inline in HTML, but do
not account for multipart emails. The last setup targets PGP/MIME
and uses Content-Type: multipart/mixed. One part is HTML,
while the other uses Content-Type: multipart/encrypted with
the protocol set to application/pgp-encrypted. Our test cases
ignore the possibility of malicious HTML in the encrypted MIME
structure, as the threat model would require a user to embed third-
party stylesheets into their email. A mixed context is determined
based on the visual rendering of the decrypted email using a custom
stylesheet that applies text-altering properties to all elements using
the CSS universal selector (i.e., *). In total, we define 5 properties
that alter the visual appearance of the text drastically, where each
is defined using the !important keyword. This ensures precedence
over styles defined by the client. We leverage one test for each
combination of inclusion method and setup. Our test corpus is com-
prised of 31 distinct test cases spanning 6 popular clients, resulting
in 186 test cases. Appendix D provides more details.

4.2 Findings
The results of the email client study are shown in Table 1. Most im-
portantly, Thunderbird, KMail, and Apple Mail, with the GPGSuite
plugin, allow a mixed context in which untrusted stylesheets can
be applied to decrypted content. Further, they all support the vast
majority of CSS features, including at-rules and remote content.
Interestingly, KMail was not susceptible to Efail [39], showing that
the lack of isolation goes beyond the original attack vector. By
default, Thunderbird requires a button press to allow the loading of
remote content and a second button press to perform the decryption.
The same button presses are required by KMail, with the addition
of a third button press to enable HTML rendering. Note that this
behavior is highly customizable in most clients. Thunderbird, for
example, allows users to grant default permissions globally, per
sender or per domain. As discussed in Section 7.1, an attacker can
leverage exceptions to bypass the default remote content policy via
sender spoofing. Further, blocking remote content is challenging,
as also shown by prior research [39] and our investigations.

By default, Apple Mail does not require any user interaction
to load remote content. However, the plugin aims to prevent the
loading of remote content using the API provided by Apple Mail
should a message be decrypted in a mixed context. Interestingly,
we still see some remote images in a mixed context, even without
user interaction. The vendor response indicates that this only af-
fects previously cached remote content, and is thus not considered
exploitable. Several users have reported issues with remote content
not being blocked, at least indicating inconsistent behavior. 1. This
underlines the challenge of entirely blocking remote resources.

1https://mjtsai.com/blog/2024/06/07/apple-mails-broken-block-all-remote-content/

<body>
<table class="moz-header-part1 moz-main-header">

<tbody>...</tbody>
</table>

<link rel="stylesheet" href="data:text/css;base64,..">

<div class="moz-text-html"><pre>DECRYPTED MESSAGE</pre></div>
</body>

Listing 1: A simplified version of the DOM rendered by
Thunderbird after decrypting PGP/Inline. The untrusted
stylesheet that enables our attack is highlighted in red.

4.3 Vulnerability Analysis
In the following, we analyze the lack of isolation with Mozilla

Thunderbird as an example. Note that the same issue also applies to
the other affected email clients. We discover that Mozilla Thunder-
bird does not correctly isolate encrypted inline PGP contexts. An
HTML email with encrypted inline PGP is first rendered without
performing the decryption. If the user does not have automatic
decryption enabled, they are presented with a button for the de-
cryption. After decryption, all HTML elements are removed from
the existing DOM, and instead, the decrypted content is inserted.
Due to reusing the same DOM, stylesheets persist and are applied
to decrypted content. Listing 1 shows a simplified version of the
resulting DOM structure. As such, Efail’s original direct exfiltration
attack is completely mitigated. However, the untrusted stylesheet
still remains within the same context as the decrypted content.
In essence, this setup is similar to the one of a traditional CSS
exfiltration attack in the browser [18].

Limitations of Existing CSS Exfiltration Attacks. CSS exfil-
tration attacks are a well-known class of attacks that leverage CSS
features to exfiltrate data from the DOM of websites. Prominent ex-
amples include attacks that leverage attribute selectors to exfiltrate
data from HTML attributes. HTML attributes are often used to store
sensitive information, such as API keys or anti-CSRF tokens [40].
In our case, however, as showcased in Listing 1, the targeted data
is not stored in HTML attributes but rather in the text content
of HTML elements. Here, attack techniques are sparse and often

Table 1: Results on PGP-compliant email clients. shows
that plaintext and untrusted styles are rendered in the same
context.

Type Client Plugin Mixed
Con-
text

Cross-Platform Thunderbird -

Windows Outlook gpg4o

Outlook gpg4win

Linux Evolution -

KMail -

macOS Apple Mail GPGSuite

https://mjtsai.com/blog/2024/06/07/apple-mails-broken-block-all-remote-content/

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

have limited applicability. As an example, Heiderich et al. [18] pro-
posed a technique that is able to exfiltrate text of HTML elements
of short length, e.g., four-digit PIN codes, using scrollbar-selector-
based width measurements. Since this technique basically performs
a dictionary attack, it cannot be used to exfiltrate arbitrary text.
Furthermore, the scrollbar selector, which is widely used by CSS
exfiltration attacks [18, 26, 29, 37], is not universally supported
across rendering engines. In our case, the selector is, for example,
not supported by the Gecko engine used by Thunderbird.

5 Exfiltrating PGP-encrypted Emails with CSS
Since both Efail’s direct exfiltration and existing CSS techniques
are not capable of exfiltrating arbitrary text from HTML elements
in email clients, we propose a new technique that demonstrates the
feasibility of CSS-based exfiltration attacks in email clients.

In the following, we provide a high-level overview of our attack
technique. In a nutshell, we recover the text (e.g., email) content
of HTML elements using a combination of width measurement
and repeated text rendering with specifically crafted ligatures in
custom fonts. Figure 2 provides an overview of the technique. We
first create font ligatures (1) that uniquely change the dimensions
of the rendered text based on its first unknown character (Sec-
tion 5.1). As such, the width of the text directly encodes the first
unknown character of the text element. An attacker can measure
these dimensions for a single ligature (2), which is then used to
load a unique resource from the attacker’s server (3). The attacker
thereby learns the respective character (or even several characters)
that are represented by the ligature (Section 5.2). Such leakage can
be repeated arbitrarily often using the lazy loading of fonts com-
bined with CSS animations (4) to recover larger contents fully
deterministically (Section 5.3). In particular, the lazy-loading of our
custom fonts via the animations allows the incremental construc-
tion of a known prefix where leverage the known prefix to target
the next unknown character. This section introduces the general de-
sign concepts behind the attack. We provide more implementation
details in Section 6.

5.1 Content-Based Font Dimensions
We first introduce a font-based technique that maps the textual
content of an element to a unique width that encodes information
about the content. To allow an attacker to iteratively leak a text
character by character, we encode a known prefix together with
guesses for the next character. Each guess has a uniquewidth, which
the attacker can infer, e.g., using container queries (Section 5.2).

When rendering text, characters or symbols are visually repre-
sented by glyphs as assigned by the font. The mapping is performed
using lookup tables stored in the font file. The horizontal width of
text depends on the advance width of the glyphs the element con-
tains and, therefore, the font used for rendering. Using an OpenType
feature called contextual ligatures, we may substitute a sequence of
glyphs with a single glyph. By assigning a unique advance width
to the substitution glyph, we can distinguish character sequences
based on their width, which we can measure, e.g., using CSS con-
tainer queries. The technique requires the loading of a custom font
and its use for rendering. This uses the CSS directive @font-face
and the property font-family, which are universally supported.

1 @Letters = [a b c d e f ... z];
2
3 feature clig {
4 ignore sub @Letters s' e' a';
5 sub s' e' a' by width1;
6 ignore sub @Letters s' e' b';
7 sub s' e' b' by width2;
8 ...
9 } clig;

Listing 2: An example of contextual ligatures that map char-
acter sequences to unique widths. The ignore sub keyword
instructs the next substitution to be ignored upon match.

5.1.1 Using Ligatures as a Filter. In the following, we introduce
our use of ligatures to assign a unique width to different character
sequences. A contextual ligature replaces a sequence of glyphs with
a single glyph (e.g., “ffi” instead of “ffi”). Ligatures are implemented
through substitution rules defined within an OpenType font’s lay-
out tables. These rules specify which character sequences should
be replaced by ligature glyphs based on contextual factors such as
neighboring characters or glyph positioning.

Listing 2 shows the syntax of OpenType used to define contextual
ligatures. @Letters is defined as the set of glyphs representing
lowercase ASCII letters. Next, we define ligatures that replace a
character sequence with some other glyph unless the sequence is
preceded by any lowercase ASCII letter. For example, the sequence
“sea” is replaced with a glyph defined as width1. As the glyph name
suggests, we define one glyph per character sequence and use
unique widths to identify the character sequence.

To assign a unique width to the set of possible prefixes, we first
map all regular characters to glyphs that have zero width. This
prevents any characters that are not part of the prefix from influ-
encing the width of the text. Next, we create a contextual ligature
that replaces the corresponding prefix with a glyph with a unique
width. This is illustrated in Listing 2, where the combined sequence
of the known prefix is “se”, and every possible next character is
replaced by a glyph with a unique width. This effectively allows us
to determine the character that succeeds a known prefix.

5.1.2 Targeting the First Glyph. To leak the entire text character
by character using our technique, we start by targeting the first
character of the text. Inherently, though, ligatures do not provide
means to target the first glyph of a text. Previous work based on
prefix-matching approaches did not address this problem and as-
sumed a known prefix [26, 29]. We solve this problem by creating a
contextual ligature that targets all glyphs not preceded by another
glyph. For this, we leverage the ignore sub feature as showcased
in Listing 2. It allows the definition of exceptions for the following
substitution rule. We create an exception if the sequence is preceded
by any other character, i.e., extending @Letters in the example to
contain all characters. The next substitution rule can only match
at the start of text. For our purposes, the charset to ASCII. It can,
however, also be extended to Unicode.

5.1.3 Practical Font Limitations. The number of glyphs a font can
define, as well as their widths, is bounded by the OpenType stan-
dard [30]. For OpenType fonts, this limit is implicit due to the
standard’s use of 16-bit unsigned integers. Thus, the maximum

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

Font 1

1

sub ^0.* by w1;

sub ^1.* by w2;

2

<p> 10 </p>

<container>

width = w2

measures

(a) The attacker creates a custom font with ligatures that assign
unique widths (w1, w2) to prefixes starting with the characters 0
and 1, respectively. All non-matching patters are assigned the width
0. The width is then measured using container queries. Loading a
unique width-dependent resource now leaks the first character.

Font 2

1

sub ^10.* by w3;

sub ^11.* by w4;

2

<p> 10 </p>

<container>

width = w3

measures

(b) The attacker builds Font 2 using the known prefix 1. With the
potential next characters 0 and 1, the prefixes 10 and 11 are assigned
unique widths (w3, w4). This is again measured and leaked to the
attacker, revealing the second character. The attacker repeats these
steps until the full secret is extracted.

3 GET /leak1?c=1

Attacker constructs Font 2
with known prefix 1

4 Animation Step

3 GET /leak2?c=0

Figure 2: A high-level overview of our attack technique. The binary string 10 serves as an example secret. We leverage font
ligatures (1) that assign a unique width to text elements. For clarity, we use regex syntax for the ligatures. The element’s width
is measured using container queries (2), which leads to the loading of a unique, width-dependent remote resource (3). Using
CSS animations and lazy font loading (4), the attacker repeats this process for each character, thus incrementally expanding
the known prefix character by character. The entire process is invisible for the victim.

number of glyphs per font is 65 535 (0xFFFF). The same 16-bit limit
also applies to the advance widths of glyphs. Note that advance
widths are defined relative to each other, so a slight difference in
advance widths may not be distinguishable in every rendering con-
text. Minimal differences may lead to the same pixel grid alignment,
which prevents distinguishing these glyphs based on their width.
These two factors limit the amount of information that can be
exfiltrated with a single font necessitating the use of multiple fonts.

5.2 Measuring and Leaking Widths
Glyphs allow the encoding of specific character sequences as liga-
tures with content-specific widths. As a next step, attackers must
measure and leak the content-dependent sizes. This implicitly leaks
the otherwise secret content now encoded into a single glyph. To
this end, attackers follow a two-step process. First, they measure
the width of the glyph. Prior work has identified several methods
that allow such measurements, e.g., via media queries [18, 25] and
container queries [55]. Based on a specially crafted layout of HTML
elements, rendered content affects container dimensions, which
can be queried in pure CSS. We present more details and discuss
implementation alternatives in Section 6.1. Second, attackers must
learn the measurement results via a feedback channel to recover the
implicitly leaked content. Given a child element of a container to
which we can apply styles, we may leverage width-dependent prop-
erties and directives that trigger the loading of remote resources.
We provide more implementation details in Section 6.2.

5.3 Constructing Incremental Measurements
In many cases, a malicious actor can only provide a single stylesheet
for the attack, for example, in emails or when users get suspicious

when a website opens several pop-ups. Thus, any realistic attack
has to work “in a single shot” to reduce the attack prerequisites and
user interactions. As we show in this section, attackers can use a
single CSS file that dynamically loads fonts to leak content fully.

5.3.1 Multiple Measurements in a Single Stylesheet. Previous work
relied on repeated injections (e.g., multiple popup windows) to leak
character sequences [26, 29]. This is not possible for emails unless
we assume the target user would re-open the email many times.
Instead, our technique can overcome this limitation using CSS ani-
mations. By using a custom CSS animation that combines multiple
measurements, we can load and apply an unlimited number of liga-
tures in a single stylesheet. We define such animations using the
@keyframes directive that includes all different styles of an element
we want to measure as animation frames. We leverage standard-
compliant CSS animations without any user interaction, as ani-
mations defined via the @keyframes directive start automatically
upon content rendering. Common email clients (e.g., , Thunderbird
and KMail) and browsers do not throttle or block such animations,
ensuring stable leakage across multiple repeated experiments. Each
animation frame loads and applies a new, attacker-controlled re-
mote font.2 To this end, we define fonts using @font-face that
are consumed in order by the animation. We can also control the
animation’s timing using the CSS property animation-duration.
This way, we leverage the lazy-loading behavior of remote fonts ex-
hibited by user agents. All major browser engines defer the loading
of remote fonts until they are required for rendering. The resulting

2For full-text recovery, we have to load remote fonts from an attacker-controlled
source. This allows for keeping state on the attacker-controlled server to dynamically
create the custom fonts used for measurements. Fonts loaded from data URLs can also
be leveraged to infer relevant information, such as performing a dictionary attack.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

primitive thus allows us to iteratively (i) load attacker-controlled
custom fonts that, one by one, are applied to the target element
and change ligatures and (ii) measure the widths of the text once
ligatures are applied. So, while each font is still bound by size re-
strictions (cf. Section 5.1.3), the sequence of fonts—and hence, the
overall number of ligatures we can test in a realistic scenario—is un-
limited. Furthermore, the animation allows us to dynamically create
fonts that contain ligatures based on past leaked information. We
can thus leverage this technique to load attacker-controlled fonts
iteratively and thereby incrementally leak the entire text content.

5.3.2 Incremental Full-Text Leakage. We use the primitive of mul-
tiple measurements to incrementally leak the known prefix (and,
hence, the text) character by character. Attackers rely on the prefix
obtained by prior measurements. This prefix is then added to the
substitution rules of the following font loaded from the attacker’s
server. We use the information obtained by prior measurements as
a prefix for ligatures, such that we effectively construct a ligature
chain that identifies the text of the target. For example, if the known
prefix is “Dear Alic”, the attacker can deliver a font with ligatures
for “Dear Alica”, “Dear Alicb“, “Dear Alicc”, and so forth, ultimately
leaking the next character and expanding the prefix.

6 Attack Implementation
In this section, we discuss different width measurement techniques
that enable the attack as outlined in Section 5, and how we can
relay measurements to a remote server. Furthermore, we discuss
contextual improvements to the attack and discuss its limitations.

6.1 Measuring the Width of HTML Elements
In this section, we describe how to leverage the CSS-based technique
of prior work [55] to measure the width of HTML elements for our
attack. The technique does not use any non-standardized features
or subdocuments (e.g., iframes) and is thus the first technique that
can be leveraged in every standard-conforming context. Currently,
the technique has only been used for fingerprinting in an attacker-
controlled environment. Thus, we describe how we can apply the
technique in a context where we do not control the DOM.

At its core, the technique leverages CSS container queries for
querying the dimensions of container elements [5]. The setup to
measure the width of an element requires three elements: the tar-
get element, one adjacent element, and a common parent element
(see Figure 2). We transform the element adjacent to the target
element into a container using container-type: inline-size.
We leverage the adjacency of the elements such that a query of the
container dimensions directly translates to the dimensions of the
target element. For this, both elements must share a common parent
element called the wrapper. We let the wrapper scale to the width
of its content using width: fit-content. We let the container
scale to the full width of its parent using width: 100%. Now the
width of the parent and the container are equal to the width of the
target element, such that a container query reports the dimensions
of the target element. Using this technique, we can measure the
content width of an element by setting the width: fit-content
property of the element. Note that we cannot directly transform
the target element into a container and measure its width, as the
width of a container is independent of its content. Furthermore, the

conditional styles inside of container queries can only be applied
to children of the container. Thus, the container used in the setup
must feature at least one child element. The attacker injects new or
transforms existing DOM elements into the measurement setup.

Real-World Measurement Setups. As we have just described, we
require a measurement setup where a container is adjacent to the
target element. Such a setup can be created by transforming an exist-
ing element into a container and is thus applicable in any real-world
context. As an example, the setup for Thunderbird is described in
Section 7.1 (for KMail, see Appendix B). We can always propagate
the target’s width to its parent by setting the parent’s width to
fit-content and the display property of any other children to
none.

Overwriting Existing Styles. Inherently, CSS injections conflict
with stylesheets defined by the victim. CSS rules are applied accord-
ing to their specificity [9]. Thus, any properties the victim defines
must be overridden using more specific selectors or the !impor-
tant keyword, which allows a rule to override more specific rules.
Note that a rule defined using !important can be overridden by
another rule with the keyword and greater specificity [9].

Alternative Width Measurement Techniques. While width mea-
surements using CSS is not inherently new, our technique stands
out because it only requires standardized CSS features, which were
previously considered harmless, thus making it the first method that
is not only applicable to all major browsers but also to email clients.
Prior work [18] has identified two other CSS-based approaches that
allow for approximating the width of elements. Those techniques
leverage iframes, the ::-webkit-scrollbar:horizontal selector
and media queries. The idea is to fill an iframe with an element
of a fixed width. The width of this element is the threshold above
which a request to the server is issued, where the threshold is de-
termined via media queries or the presence of a scrollbar. Similarly,
Lin et al. [25] used the same technique for CSS-based fingerprint-
ing. In general, both techniques are less flexible than our approach
due to their use of iframes. The use of iframes is often restricted,
e.g., in email clients [55]. Both techniques require injecting iframes
adjacent to the target element. This is a much stricter requirement
than the setup used by container queries, as container queries allow
for existing elements to be repurposed.

6.2 Exfiltrating Measurements
On a high level, we can transform the width of HTML elements
into conditional styles. However, the width measurements must be
relayed to a remote attacker-controlled server that performs post-
processing to recover the textual content. Given a child element of
a container to which we can apply styles, we leverage various prop-
erties and directives that trigger the loading of remote resources.
For example, we can use the background-image property to load
remote images using the url() function.

Encoding. In email clients, each request issued by CSS is usu-
ally only performed once, and all subsequent uses of a resource
are served from a cache. This even applies when cache-control
headers indicate that a resource should not be cached. Since CSS
does not provide a way to force the reloading of resources, each

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

1 @keyframes CustomAnimation {
2 0.0% { font-family: "CustomFontA"; }
3 50.0% { font-family: "CustomFontB"; }
4 }
5 @font-face {
6 font-family: "CustomFontA"; src: url("/font/next?it=0");
7 }
8 @font-face {
9 font-family: "CustomFontB"; src: url("/font/next?it=1");
10 }

Listing 3: CSS animations can be leveraged to implement
full-text leakage as described in Section 5.3. Each font leaks
a character of the target element such that we can leak two
characters. The fonts are applied to the element in order
via the custom animation. The width measurement setup is
omitted for brevity (see Appendix A).

container query can only be used once to relay a measurement. For
this reason, every measurable state must map to a unique set of
container queries. Moreover, all measurable states must be mutu-
ally exclusive to allow a direct recovery of the text content without
any post-processing. For our purposes, we leverage one query per
character at each point in the ligature chain. Assuming we target
the 26 lowercase letters, we require 26 distinct container queries
multiplied by the number of characters to recover. Thus, the num-
ber of container queries grows linearly with the length of the text.
Outside of email clients, caching is often not an issue, which allows
reusing the same container query multiple times.

Remote Images. For the exfiltration, we require the ability to
load remote content. Our implementation uses the background-
image property. In some scenarios, exfiltration may be prevented
simply by blocking remote content. Examples include a strict CSP
or email clients that prevent the loading of remote resources in
email threads with encrypted messages. Prior research [39] and
our investigations (e.g., sender spoofing, cf. Section 7.3), however,
show that blocking remote content is often challenging and may
constitute an orthogonal problem in email clients.

6.3 Incremental Full-Text Leakage
Listing 3 shows an example implementation of the full-text leakage
introduced in Section 5.3. We omit the measurement setup and
process. For completeness, the omitted parts are listed in Listing 4 in
Appendix A. Our example leverages two fonts and is thus capable of
leaking two characters. Each font contains a set of ligatures similar
to the example in Listing 2. In our example, each font is applied
to the target element for 500ms due to the animation duration of
1 s. The second font, i.e., CustomFontB, is only constructed on the
server after the measurement generated by the first font is received.
Our server implementation is a simple Python script of about 100
lines using fonttools [44] and Flask [43].

6.4 Attack Enhancements
In this section, we describe a set of enhancements that allow for
greater stealthiness and flexibility during the exploitation phase.
They are, however, not required for successful exploitation.

Stealthiness. The attack can be hidden entirely from the user by
limiting the visibility of the measurement setup. In particular, we
can use the visibility: hidden property to hide the measure-
ment setup entirely. Alternatively, we can set opacity: 0, use fonts
without any visible glyphs, or even color the text the same as the
background. To further conceal the attack, we can introduce decoy
content that mimicks an actual email. This can, for example, be
achieved using the ::before and ::after pseudo-elements with
the content property. This property can be used to define arbitrary
text that is rendered before or after an element. Ultimately, this
allows the attack to be concealed in such a way that it is indis-
tinguishable from a regular email. Depending on the email client
configuration, the attack requires no user interaction in the best
case, and up to three clicks in the worst case, excluding the ini-
tial email opening. Note that these clicks are also required when
opening benign emails. There are no popups or other user interface
elements that would indicate an attack is in progress.

Recursively Loading Stylesheets. In Chromium-based browsers,
the @import rule is non-blocking, which allows the attack to lever-
age the lazy loading of stylesheets instead of only fonts [17]. This
allows the attack to be split across multiple stylesheets or even to
circumvent CSPs that do not allow remote fonts.

Restricting the Charset. The charset of the target text may be
restricted to only lowercase or uppercase characters using the CSS
directive text-transform. This effectively reduces the number of
characters we have to take into account by 26, which allows for
encoding more information in a font or minimizing its size.

Leaking Character Pairs. Furthermore, depending on the charset,
we can easily leak character pairs, or even triples, instead of single
characters (see Section 5.1.3). This doubles or triples the leakage
rate of the attack technique.

6.5 Attack Limitations
The attack is only limited by the speed at which the client can load
and apply the custom fonts. As such, the limit is determined by the
client hardware and round-trip time (RTT) to the attacker server.
It determines the maximum speed of the animation described in
Section 5.3. Thus, we can address this limitation by delaying the
start of the animation using animation-delay and increasing its
overall duration. Any server-side computation time is negligible.

CSS Mechanisms Used. The ability to use CSS at-rules is vital
to the attack technique. In particular, we leverage @container,
@font-face, and @keyframes. For this, we require the ability to
inject top-level CSS rules since at-rules may only be used at the top
level. Top-level rules can be defined via the <link> tag, using the
at-rule @import, or by using inline <style> tags. Note that style
attributes do not suffice to implement the outlined attack.

7 Case Study: Breaking Email Encryption in
Thunderbird

In this section, we outline the building blocks for our attacks that
break the confidentiality of end-to-end encrypted emails. As intro-
duced in Section 4.3, we operate in a scenario where the attacker
can inject arbitrary top-level CSS into the context of an encrypted

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

email. For readability, we only focus on Mozilla Thunderbird. It
merely serves as a case study to demonstrate the feasibility of our
attack technique. However, the attack technique is applicable to all
email clients that allow the application of untrusted stylesheets to
decrypted content (cf. Table 1). As analyzed in Section 4.3, this also
applies to KMail. The proof-of-concept also works in KMail, but
we omit the details here for brevity. In Appendix B, we discuss the
attack implementation against KMail, which only requires minor
adjustments in the measurement setup.

7.1 Prerequisites
In the following, we discuss the availability and requirements of
the individual building blocks of the attack.

CSS Features. While Thunderbird does not allow the use of con-
tainer queries in inline stylesheets, stylesheets included via the
<link> element allow the use of most CSS features. This includes all
features relevant to our attacks: container queries (i.e., @container),
animations (i.e., @keyframes) and external fonts (i.e., @font-face).

Remote Content. The loading of remote content is required for ex-
filtration. While Thunderbird aims to generally prevent the loading
of remote content in email threads with encrypted messages, our
investigation shows this is not the case in a mixed context, enabling
exfiltration. A more detailed discussion is provided in Section 7.3.

Width Measurement. To measure the width of the decrypted
content (see Section 6.1), we have to inspect Thunderbird’s DOM
structure of mixed-context emails, as shown in Listing 1. The de-
crypted content is rendered in the <pre> element. We propagate
the element’s width to its parent by setting the width of the parent
<div> to fit-content. Finally, we leverage the <body> element as
the wrapper and transform the <table> element into a container.
The <table> element is adjacent to the <div> with the width of
the decrypted content, allowing us to measure the content’s width.

7.2 End-to-End Content Exfiltration
In the following, we present different end-to-end attacks of de-
creasing complexity that allow us to recover the content of a PGP-
encrypted email in Thunderbird.

7.2.1 Full-Text Recovery. First, we perform full-text recovery on en-
crypted emails. We combine all techniques as outlined in Section 5
and Section 6 and proceed as follows.

We start by simplifying the setup. We apply display: none to
all elements of the DOM that are not involved in the attack. This
prevents them from interfering with our measurements that are
performed using the setup described in Section 7.1. We apply text-
transform: lowercase to the <pre> element, which restricts the
charset to lowercase ASCII characters such that we do not have to
distinguish between lower- and uppercase characters.

Next, we add a custom animation to the <pre> element that
consists of one frame per (estimated) leakage size. As the server
dynamically handles font generation and gracefully concludes ex-
traction once no further content can be identified, we ensure flexi-
bility and robustness in practical exploitation scenarios where we
do not know the exact length of the exfiltrated text. Each frame
is active for 500ms to provide sufficient time for exfiltrating the

measurements and loading new fonts, even for slower connections.
Upon email decryption, the animation is applied to the decrypted
content, and the leakage process begins. We set the visibility of
the content to invisible to ensure that the victim does not see any
visual clue, such as flickering, ensuring a stealthy attack. The first
font of the animation changes the target’s width to identify the first
character. We leak this width to the server to compute the second
font, which now uses a ligature with the first character as a prefix
and is lazily loaded in the second frame. This is repeated until all
fonts have been loaded, i.e., all decrypted characters are leaked.

In our proof-of-concept, for demonstration purposes, we retrieve
the first 128 characters of PGP-encrypted content. Note that the
exploit described is easily extensible to leak more characters, but the
maximum leakage size has to be determined upfront. The leakage
time grows linearly with the leakage size. We thus define 𝑛 = 128
custom fonts using the @font-face directive. Each font is loaded
from a different URL pointing to the attacker-controlled server. The
custom animation is applied to the target element, i.e., <pre>. The
animation iterates over its 𝑛 frames and applies a new custom font
to the target element. To leak the widths, we define 3328 (𝑛 ∗ 26 for
“a”-“z”) container queries. Each query identifies one ASCII character
at a specific position (cf. Section 6.2). Within a query, we load a
background image for a child of the container from a URL that
identifies the character and position determined by the query. Using
this information, the server maintains a known prefix, which is
incorporated into the ligatures of the following custom font.

Evaluation. We evaluate the experiment with a remote server
over 20 repetitions. In each iteration, we generate a random 128-
character secret consisting of lowercase ASCII letters. We success-
fully leak the entire secret in 64 seconds in every repetition. The
demonstrated leakage rate of approximately 2 B/s is primarily lim-
ited by network round-trip latency and rendering overhead at the
client side. Under local network conditions, leakage speed increases
significantly (up to several tens of bytes per second), highlighting
the practicality for local adversaries or low-latency attackers.

7.2.2 4-digit PIN Recovery. As a second case study, we recover 4-
digit PIN codes from an encrypted email. Since the 10 000 possible
combinations are below the limit on the number of glyphs for an
OpenType font (approximately 65 000), we can fully recover such
a PIN with a single font and, thus, without animation. For this,
we create a custom font that contains a ligature for each possible
PIN. Each ligature replaces the PIN with a different glyph. Each
glyph has a unique width such that measuring the container’s width
reveals the PIN. For the exfiltration, we require one container query
per possible PIN. PIN recovery has minimal requirements, as the
custom font can be included in the attack email via a data URL.
Thus, only the exfiltration requires the loading of remote content. In
addition, we only require one font and do not leverage animations.
This translates to instantaneous and error-free exfiltration.

7.2.3 Keyword Detection. As a last case study, we perform keyword
detection with similar requirements to PIN recovery. We define a
set of keywords and check if an email contains at least one of
those keywords. For this, we leverage a font where every glyph
has a width of zero, except for one glyph, which is the substitute
for the keywords. Each keyword is encoded into a ligature, which
replaces the word by our non-zero-width substitute. The HTML

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

element containing the decrypted text only has a non-zero width if
it includes at least one keyword. This check only requires a single
container query, allowing instantaneous and error-free exfiltration.
Only the exfiltration requires the loading of remote content.

7.3 Remote Content Loading
In this section, we show that remote content blocking only partially
mitigates the issue and often leads to implementation inconsis-
tencies in practice. Since successful content exfiltration requires
the loading of remote content, this section further discusses how
remote content loading can be triggered in email clients. While
many clients allow remote content to be loaded by default, some
clients aim to prevent the loading of remote content entirely or
instead require a user interaction to allow it. Prior research [39]
and our investigations show that blocking remote content is often
challenging and may constitute an orthogonal problem in email
clients. As an example, Poddebniak et al. [39] showed that simple
CSS rules that load images via the background-image property
and the url() function could be used to bypass remote content
blocking in 11 email clients. In addition, most clients allow users
to add senders to an allowlist, which allows remote content from
these senders to be loaded by default. We show that remote content
blocking can be bypassed by using sender spoofing [22]. Remote
content loading can be triggered by sending an email from a al-
lowlisted sender to the target user, even if remote content loading
is disabled by default. Popular guides actively recommend adding
senders/domains to allowlists to ensure correct email rendering. Al-
though precise empirical statistics of how frequently these settings
are modified are challenging to obtain, the widespread recommen-
dation by popular services strongly indicates practical viability.
Moreover, Thunderbird’s documentation only mentions privacy
implications of loading remote content, not security risks.

8 Mitigations for Email Clients
In this section, we discuss potential mitigations to the aforemen-
tioned vulnerabilities and attacks that go beyond the currently
deployed spot mitigations against the original Efail attack [39].
Preventing any of its main requirements is a practical mitigation
for our attack. Email clients can either isolate encrypted message
contents, prevent the mixing of encrypted and plaintext content,
or block remote content. Finally, we discuss attack detection.

Isolation. Our attack requires the mixing of untrusted and en-
crypted content. Hence, a natural mitigation is to limit the inter-
actions between the different content parts. This can either be
achieved at the parser level, or by using traditional sandboxing
techniques such as iframes [10]. Alternatively, an email client
can disallow the mix of encrypted and unencrypted content en-
tirely. While this restricts functionality, most non-susceptible email
clients choose this approach. Although it is unclear whether this
was implemented in these clients for security reasons, it prevents
an attacker from applying styles to the encrypted content.

Blocking Remote Content. While the ability to apply styles to an
encrypted message is sufficient to undermine its integrity [33], it
is not necessarily enough to exfiltrate the content, which requires
the ability to load remote resources. Thus, blocking the loading of

remote content prevents exfiltration. As discussed in Section 7.3,
this has to be implemented correctly. Instead of blocking remote
content, clients could unconditionally fetch all remote resources of
an email and directly include them via data URLs [55]. This way,
the attacker does not receive requests from the victim.

Attack Detection. Due to the ability of using external stylesheets,
static detection of our attack is infeasible. The loading of such ex-
ternal stylesheets can be deferred until after successful decryption
or fingerprinting [55]. However, dynamic attack detection during
the exfiltration phase is feasible. Here, the email client could mon-
itor the loading of remote resources and styles. A high number
of remote resources loaded over time, or the evaluation of a large
number of container queries could indicate an ongoing attack.

9 Applicability to the Web
In this section, we show that, unsurprisingly, our new scriptless
attack can also be used on the web. We introduce the threat model
for web attackers (Section 9.1) and demonstrate that our attack
breaks the security guarantees of Meta’s Code Verify (Section 9.2),
showing a gap in their threat model. In response to our research,
Meta has extended the Code Verify threat model to account for
scriptless attacks. Additionally, we show that popular sanitization
libraries do not account for scriptless attacks (Section 9.3).

9.1 Threat Model
In the web scenario, an attacker aims to recover arbitrary text
content on a website. The attacker exploits a vulnerability in the
website that allows stylesheet injection, which is still possible in
several settings where script-based attacks are prevented.

9.1.1 XSS Mitigations. Scriptless attacks from an alternative to
XSS [40]. While they are more limited, they can circumvent security
measures tailored towards detecting malicious scripts [36].

HTML Sanitizers. While most HTML sanitization libraries are
highly customizable, they commonly provide default configura-
tions. However, our investigation shows that some libraries do not
account for scriptless attacks in their threat model but only focus
on XSS. Both DOMPurify and the HTML Sanitizer API implementa-
tion of Firefox do not filter <style> tags, thus allowing scriptless
attacks. The same applies to the Trusted Types API, which enforces
type safety for DOM manipulation if used with such a library.

Content Security Policy (CSP). While the sources of images and
stylesheets can be defined by a CSP, they are often overlooked,
especially on sites that deploy policies hardened against XSS. This
is underlined by the findings of prior work [47, 54] that estab-
lished three main use cases of CSP in the wild: framing control (i.e.,
frame-ancestors), TLS enforcement (i.e., block-all-mixed-content and
upgrade-insecure-requests) and script content restriction.

9.1.2 Script-restricting Clients. Clients can block scripting entirely [4,
32] or restrict access to certain features, e.g., the NoScript exten-
sion [16]. Additionally, Accountable JavaScript, the concept of audit-
ing client-side code before execution, is increasingly gaining impor-
tance in academic research [14] and industry practices [27]. Client-
side secrets could be exfiltrated by delivering malicious JavaScript
at any time due to the ephemeral nature of web applications. The

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

Meta Code Verify extension shows a user if the page’s scripts do
not match the expected scripts [27, 28]. This can, e.g., indicate a
compromised server. We argue that not considering CSS is a flaw
in Meta’s threat model, as it undermines all security guarantees.
Our technique that allows for fully recovering text using only CSS
goes unnoticed and bypasses the extension’s security guarantees.

9.2 Case Study: Code Verify
In this section, we show how our scriptless attack bypasses the pro-
tection of the Meta Code Verify extension. Although Meta’s Code
Verify extension currently serves a niche community, its explicit
threat model oversight–auditing JavaScript but ignoring CSS–is
indicative of a broader, systematic gap in modern web security au-
dits. Our CSS-based attack clearly demonstrates the inadequacy of
JavaScript-only audits in protecting end-to-end encrypted content,
also acknowledged by Meta and thus fixed in the current version.

Extension Design. The Code Verify extension provides a trans-
parent audit of the client-side code of a web application [27]. It
verifies the integrity of the code served to the end user. This enables
the detection of parties that modify, add, or remove scripts that
could exfiltrate client-side secrets. An example of such secrets is
end-to-end encrypted messages in WhatsApp Web. As such, the
threat model accounts for browser extensions that inject their code
and a malicious server that serves code different from the regu-
lar operation. Meta has released a high-level description of their
implementation of Accountable JavaScript [27]. Furthermore, the
actual implementation as a browser extension is open-source and
available for Chrome, Firefox, and Safari [28]. Code Verify expands
on the concept of subresource integrity [12], a browser security
feature that detects manipulation of resources. The extension calcu-
lates cryptographic hashes for all scripts of the site. These hashes
are compared against the expected fingerprint of the code a trusted
third party maintains. In the case of Meta, the trusted third party
is Cloudflare. The site must deploy a CSP that prevents the use
of inline scripts and eval functions and also restricts the possible
sources of Web Workers. If the hashes do not match or the site has
no restrictive CSP, the user is notified.

Scenario. As a proof of concept, we add our own site to the list
of sites on which the extension can operate and add a script that
starts the audit on our site. This script is analogous to the one
used on instagram.com, except that the user does not have to be
authenticated. We replace the trusted third party with a custom
domain since there is currently no way of registering an application
with Cloudflare for audits. We perform an audit of a site that has no
scripts and deploys a sufficiently restrictive CSP. The site contains
a secret, similar to the scenario in Section 9.3. When deploying
stylesheets on the site that are not present during the initial audit,
a user is still shown that the site matches the expectations of the
trusted third party. We verify this by recovering the secret from
the site using our scriptless attack. The user is presented with a
message that the audit was successful.

9.3 Case Study: DOMPurify Bypass
In this section, we outline an end-to-end attack that allows for re-
covering the secret from an example web application that leverages

the default configuration of DOMPurify to prevent XSS attacks. We
use DOMPurify as instructed by the official documentation of the
project. As our study shows, DOMPurify does not remove <style>
tags from the input. This enables all building blocks for our attack
technique. In our scenario, an attacker wants to leak a secret placed
in a <p> tag. For a successful attack, we must first identify a part
of the DOM that matches the layout described in Section 6.1. In
general, we only need two adjacent elements where the container
element has some child element. We provide a more sophisticated
real-world example in Section 7. The script of the site takes attacker-
controlled input, sanitizes it using DOMPurify, and adds it to the
DOM. By default, DOMPurify aims to mitigate all script injections,
such as <script> tags or event listeners. Thus, the application is
not susceptible to XSS but still provides means to dynamically add
HTML to the DOM. While a malicious actor can only insert benign
HTML tags, this includes <style> tags that can add arbitrary styles
to any element of the DOM. The actual exploitation is analogous
to Thunderbird, as described in Section 7.2.1. An evaluation with a
remote server over 20 repetitions successfully recovers the secret
(𝑛 = 128) in Chromium, Firefox, and Safari.

Other HTML Sanitizers. We analyzed the top 10 most popular
HTML sanitizers on GitHub. Popularity is determined by the num-
ber of GitHub stars since prior research has shown that the metric
correlates with deployment metrics in the wild [24]. The selection
of libraries is shown in Table 2 in Appendix C. Firefox’s implemen-
tation of the HTML Sanitizer API allows both <style> tags and
even the inclusion of remote stylesheets via the <link> element.
We find that DOMPurify and Firefox do not mitigate our attack in
their default configuration. This is likely due to the fact that both
libraries are primarily designed to prevent XSS attacks. The main-
tainers acknowledged our attack and confirmed that CSS injections
are not part of their default threat model.

9.4 Mitigations
CSS injection vulnerabilities are inherently related to XSS. Thus,
many existing solutions for mitigating XSS vulnerabilities also ap-
ply here. However, as showcased by our study of HTML sanitization
libraries, not all solutions may account for CSS injections by default.

Sanitization. Naturally, the first step in preventing the injection
of malicious code is using appropriate sanitization mechanisms [20].
However, current practices are biased towards JavaScript, often
ignoring stylesheets that enable scriptless attacks. While all in-
vestigated HTML sanitization libraries provide means to remove
stylesheets from untrusted input, not all of them do so in their
default configuration. Thus, developers must expand on the default
configurations to account for scriptless attacks.

Isolation. If feature-rich stylesheets are supposed to be controlled
by users or third parties, they can be isolated using different meth-
ods. First, user-controlled stylesheets can be isolated by leveraging
subdocuments (e.g., iframes) [10]. Second, namespacing is a tech-
nique usually employed to avoid conflicts between stylesheets [11,
46], where identifiers are prefixed such that they do not collide with
those of existing stylesheets [46]. Further, at-rules and selectors
may only be used in top-level stylesheets [6, 8], such that only
allowing style attributes prevents most known scriptless attacks.

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

Content Security Policy. As a second line of defense, websites can
deploy a CSP [56]. A CSP defines an allowlist of resources a user
agent can load for a site. A policy with the directives default-src
or style-src can restrict the loading stylesheets. A policy that
prevents the loading of remote resources also prevents exfiltration.

10 Related Work
In this section, we discuss prior work on non-cryptographic attacks
on email encryption and scriptless attacks on the web.

10.1 Non-cryptographic Attacks on Emails
Prior research on OpenPGP- and S/MIME-compliant email clients
investigated the exfiltration of encrypted content [35, 39] and the
misrepresentation of signed content [33]. Poddebniak et al. [39]
found that various email clients do not isolate multiple MIME parts
of an email but instead render them in the same HTML document.
Their attack, “Efail”, leveraged that an encrypted message wrapped
in two adjacent HTML parts would lead to the decrypted content
being treated as part of the same HTML document. This enabled
direct exfiltration of the entire text to an attacker server by placing
the decrypted content in the place of a src attribute of an
tag. Their research additionally highlighted ways of loading remote
content without consent. Their work led to several mitigations,
from blocking remote content to proper isolation. We show that
there are still shortcomings of existing mitigations in post-Efail
clients. In particular, while direct exfiltration as induced by the
parser is mitigated, decrypted content may still be mixed with
untrusted stylesheets and thus be subject to our attack.

Müller et al. [33] found that several OpenPGP- and S/MIME-
compliant clients allowed the application of untrusted stylesheets
to signed content, thus providing means to spoof signed messages.
In addition, they showed how users could be tricked into signing
responses to emails where the content was misrepresented using
stylesheets [34]. Furthermore, Müller et al. [35] showcased critical
flaws in the implementation of OpenPGP- and S/MIME-compliant
email clients that allowed the remote deployment of keys to a
communciation partner or the exfiltration of a communication
partner’s key. They additionally showed that some email clients
could be tricked into signing or decrypting arbitrary messages to
the drafts folder of the victim’s IMAP server via malicious mailto
links combined with auto save.

10.2 Scriptless Attacks on the Web
Existing “Blind CSS Exfiltration” [17, 18, 21] can exfiltrate the value
of HTML attributes using attribute selectors but not an element’s
content. Heiderich et al. [18, 19] introduced a scriptless attack to
detect the occurrence of a set of words but not for generic text
recovery. They leverage iframe-based width measurements com-
bined with ligatures to perform dictionary attacks. However, the
techniques are not widely available since, e.g., iframes are generally
unavailable in email clients [55]. Similarly, scrollbar selectors are
only available in WebKit-based user agents, such as Chromium or
Safari [7, 58]. Crucially, the described techniques cannot be lever-
aged to recover arbitrary content due to the limits on the number
of ligatures that hinder dictionary attacks. Building on this, Ben-
tkowski [26, 29] published amethod to exfiltrate arbitrary text using

the technique by Heiderich et al. [18, 19] with repeated injections.
The method maintains a prefix of known text as a ligature between
injections. However, the requirement for repeated injections and
the dependency on non-standard features makes the attack inappli-
cable to many real-world scenarios, such as attacks on email clients.
Using the unicode-range property, fonts can be loaded on demand
if a character matching that range is present in the text [23]. This
allows for leaking the charset of the text but not the text itself. In
particular, the technique does not preserve the order of the charac-
ters or their frequency. Another technique detected the presence
of text via the Chrome feature “Scroll to Text Fragment”, which
enables automatic scrolling to and highlighting of text defined in
the URL fragment [38, 48]. The presence of text can be determined
by applying styles to the highlight effect. The feature does, however,
not provide regex-like functionality, making it infeasible to recover
arbitrary text. In addition, the feature requires the user to interact
with the page [48]. Scriptless attacks have also been used to per-
form privacy-infringing attacks from the field of XS-Leaks [15, 52].
Shusterman et al. [50] demonstrated microarchitectural attacks via
CSS, and Trampert et al. [53] demonstrated them using fonts.

11 Conclusion
Our paper introduced a novel scriptless attack that extracts com-
plete PGP-encrypted plaintext using only standard-compliant CSS,
without JavaScript, visual artifacts, or complex user interaction.
We reveal that multiple widely used PGP-enabled email clients fail
to isolate encrypted content from untrusted styles, leaving them
vulnerable to rendering-based exfiltration. Our attack leverages
three benign CSS features: container queries, lazy-loaded web fonts,
and contextual font ligatures. It circumvents the limitations of prior
scriptless attacks, being able to exfiltrate arbitrary text fully, and is
universally applicable to all modern rendering engines. In Mozilla
Thunderbird and KMail, we demonstrated the effectiveness of our
attack by presenting end-to-end proof-of-concept exploits for recov-
ering the plaintext of PGP-encrypted emails. With an investigation
of the most prominent HTML sanitization libraries and Meta’s
Code Verify auditing mechanism, we showed that current security
practices are biased towards JavaScript and ignore the increasing
capabilities of HTML and CSS, as demonstrated by our attack. In
particular, we showed that the default configurations of popular
HTML sanitization libraries do not account for scriptless attacks, al-
lowing attackers to exfiltrate arbitrary text using our technique. Our
work highlights the underestimated potency of scriptless attacks
and the resulting need for broader mitigation awareness.

Acknowledgments
We want to thank our anonymous reviewers for their comments
and suggestions. This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
491039149. This work was also partly supported by the Semiconduc-
tor Research Corporation (SRC) Hardware Security Program (HWS).
We also want to thank Lukas Gerlach and Simon Schwarz for help-
ing with some experiments and Ben Stock for his valuable feedback
on the paper. We further thank the Saarbrücken Graduate School
of Computer Science for their funding and support.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Leon Trampert, Daniel Weber, Christian Rossow, Michael Schwarz

References
[1] Adobe. 2024. Syntax for OpenType features in CSS. https://helpx.adobe.com/

fonts/using/open-type-syntax.html Retrieved 2024-04-24.
[2] Apple. 2024. TrueType Reference Manual. https://developer.apple.com/fonts/

TrueType-Reference-Manual/ Retrieved 2024-04-24.
[3] Derek Atkins, William Stallings, and Philip Zimmermann. 1996. RFC1991: PGP

message exchange formats. https://datatracker.ietf.org/doc/html/rfc1991
[4] Chrome for Developers. 2019. Disable JavaScript. https://developer.chrome.

com/docs/devtools/javascript/disable
[5] World Wide Web Consortium. 2022. CSS Containment Module Level 3. https:

//www.w3.org/TR/css-contain-3/
[6] MDN Web Docs. 2023. CSS at-rules. https://developer.mozilla.org/en-US/docs/

Web/CSS/At-rule
[7] MDN Web Docs. 2024. ::-webkit-scrollbar. https://developer.mozilla.org/en-

US/docs/Web/CSS/::-webkit-scrollbar
[8] MDN Web Docs. 2024. CSS selectors. https://developer.mozilla.org/en-US/docs/

Web/CSS/CSS_selectors
[9] MDN Web Docs. 2024. CSS specificity. https://developer.mozilla.org/en-US/

docs/Web/CSS/Specificity
[10] MDN Web Docs. 2024. <iframe>: The Inline Frame element. https://developer.

mozilla.org/en-US/docs/Web/HTML/Element/iframe
[11] MDN Web Docs. 2024. Namespace. https://developer.mozilla.org/en-US/docs/

Glossary/Namespace
[12] MDN Web Docs. 2025. Subresource Integrity. https://developer.mozilla.org/en-

US/docs/Web/Security/Subresource_Integrity
[13] Electronic Frontier Foundation (EFF). 2018. Announcing STARTTLS Everywhere:

Securing Hop-to-Hop Email Delivery. https://www.eff.org/deeplinks/2018/06/
announcing-starttls-everywhere-securing-hop-hop-email-delivery

[14] Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, and Robert Künnemann.
2023. Accountable Javascript Code Delivery. In NDSS.

[15] Nethanel Gelernter and Amir Herzberg. 2015. Cross-Site Search Attacks. In CCS.
[16] Giorgio Maone. 2017. NoScript - JavaScript/Java/Flash blocker for a safer Firefox

experience! https://noscript.net
[17] HackTricks. 2024. CSS Injection. https://book.hacktricks.xyz/pentesting-web/xs-

search/css-injection
[18] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg

Schwenk. 2012. Scriptless attacks: stealing the pie without touching the sill.
In CCS’12.

[19] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. 2014. Scriptless attacks: Stealing more pie without touching the sill.
Journal of Computer Security (2014).

[20] Mario Heiderich, Christopher Späth, and Jörg Schwenk. 2017. Dompurify: Client-
side protection against xss and markup injection. In ESORICS.

[21] Heyes, Gareth. 2023. Blind CSS Exfiltration: exfiltrate unknown web pages.
https://portswigger.net/research/blind-css-exfiltration

[22] Hang Hu and Gang Wang. 2018. End-to-End Measurements of Email Spoofing
Attacks. In USENIX.

[23] huli.tw. 2022. Stealing Data with CSS - CSS Injection (Part 2). https://blog.huli.
tw/2022/09/29/en/css-injection-2/

[24] Simon Koch, David Klein, and Martin Johns. 2024. The Fault in Our Stars: An
Analysis of GitHub Stars as an Importance Metric for Web Source Code. In
Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb).

[25] Xu Lin, Frederico Araujo, Teryl Taylor, Jiyong Jang, and Jason Polakis. 2023.
Fashion Faux Pas: Implicit Stylistic Fingerprints for Bypassing Browsers’ Anti-
Fingerprinting Defenses. In IEEE S&P.

[26] Masato Kinugawa. 2021. Data Exfiltration via CSS + SVG Font. https://mksben.
l0.cm/2021/11/css-exfiltration-svg-font.html

[27] Meta. 2022. Code Verify: An open source browser extension for verifying code
authenticity on the web. https://engineering.fb.com/2022/03/10/security/code-
verify/

[28] Meta. 2022. Code Verify on GitHub. https://github.com/facebookincubator/meta-
code-verify

[29] Michał Bentkowski. 2017. Stealing Data in Great style - How to Use CSS to Attack
Web Application. https://research.securitum.com/stealing-data-in-great-style-
how-to-use-css-to-attack-web-application/

[30] Microsoft. 2024. OpenType Font Specification. https://learn.microsoft.com/en-
us/typography/opentype/spec/ Retrieved 2024-04-24.

[31] Microsoft. 2024. OpenType Overview. https://learn.microsoft.com/en-us/
typography/opentype/ Retrieved 2024-04-24.

[32] Mozilla. 2024. JavaScript settings and preferences for interactive web pages. https:
//support.mozilla.org/en-US/kb/javascript-settings-for-interactive-web-pages

[33] Jens Müller, Marcus Brinkmann, Damian Poddebniak, Hanno Bock, Sebastian
Schinzel, Juraj Somorovsky, and Jörg Schwenk. 2019. Johnny you are fired!”–
spoofing OpenPGP and S/MIME signatures in Emails. In USENIX.

[34] Jens Müller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel, and
Jörg Schwenk. 2019. Re: What‘s Up Johnny? Covert Content Attacks on Email
End-to-End Encryption. In ACNS .

[35] Jens Müller, Marcus Brinkmann, Damian Poddebniak, Sebastian Schinzel, and
Jörg Schwenk. 2020. Mailto: Me your secrets. on bugs and features in email end-
to-end encryption. In IEEE Conference on Communications and Network Security
(CNS).

[36] OWASP. 2024. XSS Filter Evasion Cheat Sheet. https://cheatsheetseries.owasp.
org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

[37] Pepe Vila. 2024. Charset Leakage Demo. https://demo.vwzq.net/css2.html
[38] Maciej Piechota. 2022. New technique of stealing data using CSS and Scroll-

to-Text Fragment feature. https://www.secforce.com/blog/new-technique-of-
stealing-data-using-css-and-scroll-to-text-fragment-feature/

[39] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising, Sebastian
Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg Schwenk. 2018. Efail:
Breaking S/MIME and OpenPGP Email Encryption using Exfiltration Channels.
In USENIX Security.

[40] PortSwigger. 2024. CSS injection (reflected). https://portswigger.net/kb/issues/
00501300_css-injection-reflected

[41] PortSwigger. 2024. Path-relative style sheet import. https://portswigger.net/kb/
issues/00200328_path-relative-style-sheet-import

[42] Proton. 2024. What are PGP/MIME and PGP/Inline? https://proton.me/support/
pgp-mime-pgp-inline

[43] Python Package Index (pypi). 2024. Flask. https://pypi.org/project/Flask/
[44] Python Package Index (pypi). 2024. fonttools. https://pypi.org/project/fonttools/
[45] Pete Resnick. 2008. RFC5322: Internet Message Format. https://datatracker.ietf.

org/doc/html/rfc5322
[46] Harry Roberts. 2015. More Transparent UI Code with Namespaces. https:

//csswizardry.com/2015/03/more-transparent-ui-code-with-namespaces/
[47] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben

Stock. 2020. Complex security policy? a longitudinal analysis of deployed content
security policies. In NDSS.

[48] Matthew Savage. 2020. PlaidCTF 2020: Catalog Writeup. https://dttw.tech/posts/
B19RXWzYL

[49] Jim Schaad, Blake C. Ramsdell, and Sean Turner. 2019. RFC8551: Secure/Multi-
purpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification.
https://datatracker.ietf.org/doc/html/rfc8551

[50] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi Oren,
and Yuval Yarom. 2021. Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses. In USENIX Security Symposium.

[51] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In S&P.

[52] terjanq. 2023. exploit.js - CTF Challenge Solution using CSS-based XS-Search
Attack. https://gist.github.com/terjanq/33bbb8828839994c848c3b76c1ac67b1

[53] Leon Trampert and Michael Schwarz. 2025. Hidden in Plain Sight: Scriptless
Microarchitectural Attacks via TrueType Font Hinting. In uASC.

[54] Leon Trampert, Ben Stock, and Sebastian Roth. 2023. Honey, I Cached our
Security Tokens - Re-usage of Security Tokens in the Wild. In RAID.

[55] Leon Trampert, Daniel Weber, Lukas Gerlach, Christian Rossow, and Michael
Schwarz. 2025. Cascading Spy Sheets: Exploiting the Complexity of Modern CSS
for Email and Browser Fingerprinting. In NDSS.

[56] W3C. 2024. Content Security Policy Level 3. https://www.w3.org/TR/CSP3/
[57] W3C Arabic Script Language Enablement Community. 2024. Arabic and Persian

Layout Requirements. https://www.w3.org/TR/alreq/
[58] W3C CSS Working Group. 2024. CSS Scrollbars Styling Module Level 1. https:

//drafts.csswg.org/css-scrollbars/

A Minimal Example: Container Queries
Listing 4 shows the measurement setup that was ommited from the
example in Listing 3. It shows the animation that can be leveraged
to leak two characters of unknown text using our technique. If we
restrict ourselves to the characters “0” and “1”, we only require four
container queries to identify the next character of the unknown
text. In the first frame of the animation, we apply a font that either
triggers the first or second container query. This information is
transmitted to the server via the loading of the corresponding
background image and leveraged in the font that is applied in the
second frame of the animation. Here, the ligatures of the font are
prefixed with the leaked character. Finally, the font is applied, and
the width of the target matches either the third or fourth container
query. Note that our queries check for width ranges, since our
investigation has shown that exact floating point width comparison
behaves inconsistently across user agents.

https://helpx.adobe.com/fonts/using/open-type-syntax.html
https://helpx.adobe.com/fonts/using/open-type-syntax.html
https://developer.apple.com/fonts/TrueType-Reference-Manual/
https://developer.apple.com/fonts/TrueType-Reference-Manual/
https://datatracker.ietf.org/doc/html/rfc1991
https://developer.chrome.com/docs/devtools/javascript/disable
https://developer.chrome.com/docs/devtools/javascript/disable
https://www.w3.org/TR/css-contain-3/
https://www.w3.org/TR/css-contain-3/
https://developer.mozilla.org/en-US/docs/Web/CSS/At-rule
https://developer.mozilla.org/en-US/docs/Web/CSS/At-rule
https://developer.mozilla.org/en-US/docs/Web/CSS/::-webkit-scrollbar
https://developer.mozilla.org/en-US/docs/Web/CSS/::-webkit-scrollbar
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Glossary/Namespace
https://developer.mozilla.org/en-US/docs/Glossary/Namespace
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.eff.org/deeplinks/2018/06/announcing-starttls-everywhere-securing-hop-hop-email-delivery
https://www.eff.org/deeplinks/2018/06/announcing-starttls-everywhere-securing-hop-hop-email-delivery
https://noscript.net
https://book.hacktricks.xyz/pentesting-web/xs-search/css-injection
https://book.hacktricks.xyz/pentesting-web/xs-search/css-injection
https://portswigger.net/research/blind-css-exfiltration
https://blog.huli.tw/2022/09/29/en/css-injection-2/
https://blog.huli.tw/2022/09/29/en/css-injection-2/
https://mksben.l0.cm/2021/11/css-exfiltration-svg-font.html
https://mksben.l0.cm/2021/11/css-exfiltration-svg-font.html
https://engineering.fb.com/2022/03/10/security/code-verify/
https://engineering.fb.com/2022/03/10/security/code-verify/
https://github.com/facebookincubator/meta-code-verify
https://github.com/facebookincubator/meta-code-verify
https://research.securitum.com/stealing-data-in-great-style-how-to-use-css-to-attack-web-application/
https://research.securitum.com/stealing-data-in-great-style-how-to-use-css-to-attack-web-application/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://learn.microsoft.com/en-us/typography/opentype/
https://learn.microsoft.com/en-us/typography/opentype/
https://support.mozilla.org/en-US/kb/javascript-settings-for-interactive-web-pages
https://support.mozilla.org/en-US/kb/javascript-settings-for-interactive-web-pages
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://demo.vwzq.net/css2.html
https://www.secforce.com/blog/new-technique-of-stealing-data-using-css-and-scroll-to-text-fragment-feature/
https://www.secforce.com/blog/new-technique-of-stealing-data-using-css-and-scroll-to-text-fragment-feature/
https://portswigger.net/kb/issues/00501300_css-injection-reflected
https://portswigger.net/kb/issues/00501300_css-injection-reflected
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import
https://portswigger.net/kb/issues/00200328_path-relative-style-sheet-import
https://proton.me/support/pgp-mime-pgp-inline
https://proton.me/support/pgp-mime-pgp-inline
https://pypi.org/project/Flask/
https://pypi.org/project/fonttools/
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://csswizardry.com/2015/03/more-transparent-ui-code-with-namespaces/
https://csswizardry.com/2015/03/more-transparent-ui-code-with-namespaces/
https://dttw.tech/posts/B19RXWzYL
https://dttw.tech/posts/B19RXWzYL
https://datatracker.ietf.org/doc/html/rfc8551
https://gist.github.com/terjanq/33bbb8828839994c848c3b76c1ac67b1
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/alreq/
https://drafts.csswg.org/css-scrollbars/
https://drafts.csswg.org/css-scrollbars/

Styled to Steal: The Overlooked Attack Surface in Email Clients CCS ’25, October 13–17, 2025, Taipei, Taiwan

1 .wrapper { width: fit-content; }
2 #target {
3 width: fit-content;
4 font-size: 160px;
5 }
6 .container { container-type: inline-size; }
7
8 @container (width > 0px) {
9 * { background-image: url("/leak/0?i=0"); }
10 }
11 @container (0.4px < width) and (width < 0.8px) {
12 * { background-image: url("/leak/1?i=0"); }
13 }
14 @container (0.8px < width) and (width < 1.1px) {
15 * { background-image: url("/leak/0?i=1"); }
16 }
17 @container (width > 1.1px) {
18 * { background-image: url("/leak/1?i=1"); }
19 }

Listing 4: The measurement setup using the technique by
prior work [55], which completes the example in Listing 3.
The charset is restricted to “0” and “1” for illustrative pur-
poses, such that we require only four container queries.

B Case Study: KMail
The attack implementation against KMail is analoguous to the
one against Thunderbird discussed in Section 7.2.1, except for the
measurement setup. We confirmed that the exploit works in KMail
6.0.2 which was the latest version at the time of writing. Listing 5
shows a simplified part of the DOM used by the KMail client when
rendering a mixed-context email for inline PGP. We can construct
the width measurement setup for container queries as discussed
in Section 6.1. For this, we transform the <tbody> element into
the wrapper. We propagate the width of the decrypted content
to the <tr> with class encrB using width: fit-content. Finally,
we transform an adjacent <tr> element into a container and can
measure the width of the decrypted content via container queries.

1 <div>
2 <table class="encr">
3 <tbody>
4 <tr class="encrH">...</tr>
5 <tr class="encrB">
6 <td><div><div>DECRYPTED CONTENT</div></div></td>
7 </tr>
8 <tr class="encrH">...</tr>
9 </tbody>
10 </table>
11 </div>

Listing 5: A simplified part of the DOM as rendered by the
KMail email client in a mixed context. Attacker-controlled
stylesheets are included above the document.

C HTML Sanitization Libraries
Table 2 shows versions and usage statistics as provided by GitHub
for the HTML sanitization libraries in our study (Section 4).

Table 2: The versions of the HTML sanitization libraries used
in our study and their usage stats as provided by GitHub.

Library Version Stars Used By

DOMPurify 3.0.11 12,700 292,000
XSS 1.0.15 5,100 n/a
bluemonday 1.0.26 3,000 12,300
Bleach 6.1.0 2,600 306,000
sanitize 6.1.0 2,000 10,000
HtmlSanitizer 8.0.843 1,500 3,100
loofah 2.22.0 920 1,700,000
OWASP Java HTML Sanitizer 20240325.1 813 3,000
insane 2.6.2 438 6,300
html-sanitizer 1.5.0 388 n/a

HTML Sanitizer API 124.0.2 - -

D PGP Email Clients
Table 3 shows the versions of the PGP-compliant email clients used
in our study (Section 4). It additionally shows the versions of the
plugins that enable the PGP functionality. All clients of Table 3
that are not listed in Table 1 are not susceptible to our attack. Note
that we had to exclude some clients listed on openpgp.org due to
severe functionality issues or unavailability.

Table 3: The versions of the PGP-compliant email clients used
in our study featuring their respective PGP plugins.

Type Client Version Plugin

Windows eM Client 9.2.2157 -
The Bat! 11.1 -
Outlook 2404 (Classic) gpg4o
Outlook 2404 (Classic) gpg4win
Postbox 7.0.60 Enigmail

Linux Claws Mail 3.17.5 -
Thunderbird 115.9 -
Mutt 9.4.0 -
Evolution 3.44.4-0ubuntu2 -
KMail 6.0.2 (24.02.2) -

macOS Apple Mail 16.0 (3774.300.61.1.2) GPGSuite 2.0 (1827)
Canary Mail 4.48 (1612) -

Android FairEmail 1.2168a OpenKeychain 6.0.4
K-9 Mail 6.802 OpenKeychain 6.0.4

iOS Canary Mail 4.47 (1506) -
FlowCrypt 0.6.0 -

Browser FlowCrypt 8.5.4 (Chrome) -
Extension Mailvelope 5.1.2 (Chrome) -

Psono 3.0.9 (Chrome) -

Webmail ProtonMail Webmail

	Abstract
	1 Introduction
	2 Background
	2.1 End-to-end Encrypted Email
	2.2 Fonts

	3 Threat Model
	4 Systematic Investigation of Email Clients
	4.1 Payload Construction and Evaluation
	4.2 Findings
	4.3 Vulnerability Analysis

	5 Exfiltrating PGP-encrypted Emails with CSS
	5.1 Content-Based Font Dimensions
	5.2 Measuring and Leaking Widths
	5.3 Constructing Incremental Measurements

	6 Attack Implementation
	6.1 Measuring the Width of HTML Elements
	6.2 Exfiltrating Measurements
	6.3 Incremental Full-Text Leakage
	6.4 Attack Enhancements
	6.5 Attack Limitations

	7 Case Study: Breaking Email Encryption in Thunderbird
	7.1 Prerequisites
	7.2 End-to-End Content Exfiltration
	7.3 Remote Content Loading

	8 Mitigations for Email Clients
	9 Applicability to the Web
	9.1 Threat Model
	9.2 Case Study: Code Verify
	9.3 Case Study: DOMPurify Bypass
	9.4 Mitigations

	10 Related Work
	10.1 Non-cryptographic Attacks on Emails
	10.2 Scriptless Attacks on the Web

	11 Conclusion
	References
	A Minimal Example: Container Queries
	B Case Study: KMail
	C HTML Sanitization Libraries
	D PGP Email Clients

