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Abstract

The main assumption of computer systems is that processed secrets are
inaccessible for an attacker due to security measures in software and
hardware. However, side-channel attacks allow an attacker to still deduce
the secrets by observing certain side effects of a computation.

For software-based attacks, unprivileged code execution is often suffi-
cient to exploit side-channel weaknesses in applications. More recently,
it was also shown that native code execution is not strictly necessary for
certain attacks. Software-based side-channel attacks are even possible in
JavaScript, a sandboxed scripting language found in modern browsers.

In this thesis, we further investigate software-based side-channel at-
tacks to develop effective countermeasures. We show that state-of-the-art
countermeasures are not always effective, as the assumptions on which the
countermeasures are based are not always correct. Our research resulted
in novel side channels, reduction of requirements for existing attacks, and
enabling attacks in environments which were considered too restricted
before. This results in a better understanding of attack requirements and
attack surface. As a consequence, we were able to propose better defenses
against this class of attacks, both for native and restricted environments.

This thesis consists of two parts. In the first part, we introduce
software-based side-channel and microarchitectural attacks. We provide
the required background on side channels, microarchitecture, caches,
sandboxing, and isolation. We then discuss state-of-the-art attacks and
defenses. The second part consists of a selection of my peer-reviewed
unmodified papers.1 I was the main contributor and first author to
these papers which have all been accepted and presented at renowned
international security conferences.

1The content of the papers is unmodified from the conference-proceeding versions
of the papers. Only the format of the papers was changed to fit the style and layout of
this thesis.
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1
Introduction and Motivation

Computer systems are often used for complex computations with secret
values, e.g., cryptographic operations. The central assumption is that
processed secrets are inaccessible for an attacker due to security measures
in software and hardware. However, side-channel attacks allow an attacker
to observe certain side effects of computations to still deduce the secrets.

Hardware-based side-channel attacks have long been known as powerful
attacks. However, until recently, little attention was paid to software-
based side-channel attacks. Countermeasures have been developed to
harden devices against physical attacks, e.g., ensuring that algorithms
have a constant runtime. While these countermeasures can prevent cer-
tain hardware-based attacks, they are incomplete against software-based
attacks. Kocher [106] was the first to describe how runtime differences
introduced by computer caches can be exploited to break constant-time
implementations of cryptographic algorithms. Since then, caches play
a predominant role in software-based side-channel attacks, as they are
present on most modern processors and are comparatively easy to ex-
ploit by an attacker. Cache-based attacks include Prime+Probe [132,
136], Evict+Time [132], Flush+Reload [201] and further variants, such as
Flush+Flush [64] or Evict+Reload [63, 113]. These attack techniques have
been used to, e.g., break cryptographic algorithms [26, 91, 93, 119, 132,
136, 201] or spy on user input [63, 113, 153]. Recently, cache attacks were
also leveraged as building blocks for Meltdown [114] and Spectre [105],
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2 Chapter 1. Introduction and Motivation

two powerful attacks which break the security guarantees of modern pro-
cessors. Meltdown effectively breaks the security boundary between user
space and kernel space, allowing unprivileged attackers to read arbitrary
memory. Spectre exploits the branch prediction of modern processors to
achieve the same goal. While Meltdown exploited an implementation bug
in out-of-order execution and Spectre exploited branch prediction, both
attacks leveraged the cache as an intermediate medium to encode and
later transmit the leaked data.

Compared to hardware-based side-channel attacks, software-based
attacks have fewer requirements, e.g., they do not require full control
over the device. Instead, unprivileged code execution is often sufficient
to exploit side-channel weaknesses in applications. Side-channel attacks
from unprivileged code cannot only attack other applications [26, 63,
91, 93, 113, 119, 132, 136, 201], but can also leak information from the
underlying operating system [66, 68, 78, 96, 153, 157]. More recently, it
was also shown that native code execution is not strictly necessary for
certain attacks. Oren et al. [131] demonstrated the first cache attack,
namely Prime+Probe, in JavaScript, a sandboxed scripting language
found in modern browsers. Moreover, Gruss et al. [67] mounted a page-
deduplication attack [167] in JavaScript, showing that even restricted
environments allow mounting powerful attacks. Thus, while JavaScript is
a language-level sandbox preventing classical memory-safety violations,
such sandboxes do not necessarily prevent side-channel attacks. This is
also true for other forms of isolation, such as virtual machines. Several side-
channel attacks can be mounted across virtual machines, either to steal
data [119, 209], or to covertly transmit data from one virtual machine to
a different virtual machine [125, 197, 198]. In many scenarios, sandboxing
or virtualization was considered an effective security measure. However,
this is not always the case when taking side-channel attacks into account.

In this thesis, we further investigate the possibilities for mounting
software-based side-channel and microarchitectural attacks from restricted
environments, such as sandboxes, operating-system-level virtualization,
and virtual machines. Such isolation mechanisms limit the impact of
classical attacks. At first glance, some of these mechanisms also appear to
mitigate certain side-channel attacks. However, we present novel attack
primitives to enable known side-channel and microarchitectural attacks
in these environments. Moreover, we show novel side channels which
can even be exploited without requiring native code execution, e.g., in
JavaScript.
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We furthermore show that side-channel attacks are applicable to oth-
erwise isolated environments, such as trusted-execution environments. We
were the first to not only mount cache side-channel attacks on secure
enclaves protected by Intel SGX but also from within such secure enclaves.
These attacks are stealthy and not detectable or preventable by state-
of-the-art detection and prevention mechanisms. This also introduces a
novel threat model, where trusted-execution environments are not only the
target of an attack but are abused to disguise attacks. Although trusted-
execution environments are usually limited in functionality to prevent
precisely such a scenario [83], we show that the provided functionality is
still sufficient to mount powerful attacks.

In this thesis, we further investigate existing and novel side-channel
attacks to develop effective countermeasures against software-based side-
channel attacks. My research focused on finding novel side channels,
reducing the requirements of existing attacks, and enabling attacks in
environments which were considered too restricted. Such an overall picture
of what is actually required to mount attacks allows reasoning about
effective and efficient defenses which target the root cause of a problem,
and not single instances of attacks. We show that for certain attack classes,
such as inter-keystroke-timing attacks, as well as for certain environments,
such as specific variants of JavaScript, it is indeed feasible to prevent all
known attacks and possibly even future attacks. By first identifying the
root cause, we ensure that our proposed solutions only result in minimal
performance overhead.

Figure 1.1 shows all the papers in context. The y-axis shows the
required level of control over the execution. It spans from native code
execution (bottom), over sandboxes (e.g., Enclaves, VMs, Containers),
script languages (e.g., JavaScript), to full remote attack (i.e., only network
access to the victim is required). The x-axis provides a classification of
how the paper advanced the state of the art. Papers on the left introduced
a new side channel or class of attacks/defenses. Papers on the right side
use an existing side channel and show how to reduce the requirements to
mount an attack, e.g., how to be independent from a specific functionality.
As papers can be a combination of both these factors, the classification is
not binary.

1.1 Main Contributions

As one of the goals in the thesis, we strive to reduce the requirements
of existing side-channel attacks further, allowing them to be mounted
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Figure 1.1: A relation between all the papers. Red and blue papers represent
papers which are in the thesis, gray papers are co-authored papers
which will not appear in the thesis. Blue represents defenses, and red
represents attacks. Solid arrows indicate that ideas and techniques
directly influenced a paper, whereas dotted arrows indicate an
indirect or loose connection between papers.

from more restricted environments. We started working on reducing
the requirements for the DRAM side channel [139]. Pessl et al. [139]
showed that the DRAM can be used in a similar manner as the cache
to transmit data covertly. By building on techniques from Gruss et al.
[69], we managed to implement this covert channel in JavaScript. This
enabled exploitation of the side channel directly from the browser. The
paper was published at FC 2017 [150] in collaboration with Clémentine
Maurice, Daniel Gruss, and Stefan Mangard.

The experience with cache eviction and sandboxes allowed us to im-
plement Prime+Probe in the sandbox-like environment of Intel SGX.
Intel SGX is designed to protect applications and their data in hostile
environments using so-called enclaves. These enclaves run unprivileged
code with further restrictions to prevent them from running harmful code.
We were the first to show that this guarantee does not hold and that it is
possible to mount cache attacks from within SGX [154]. To enable such
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attacks, we combined the DRAM side channel [139] with our previously
developed timing primitives [150]. Moreover, we showed that Intel SGX
does not protect against software-based side channel attacks. The paper
was published at DIMVA 2017 [154] in collaboration with Samuel Weiser,
Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Due to the exact measurement methods used for Prime+Probe in
SGX [154], we observed spikes in our timing measurements caused by
keystrokes. We showed that these spikes can also be generated using
artificial interrupts, which allowed us to build the first effective counter-
measure against keystroke-timing attacks. By hiding the actual keystrokes
among specially crafted noise, we prevented keystroke-timing attacks on
both x86 and ARM. This paper was published at NDSS 2018 [153] in
collaboration with Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine
Maurice, Raphael Spreitzer, and Stefan Mangard.

As a consequence of the novel attacks in JavaScript [116, 150], we
presented a generic countermeasure to prevent side-channel attacks from
the browser. With JavaScript Zero [152], we developed a framework which
transparently modifies or replaces functionality in the JavaScript language,
effectively preventing all known side-channel attacks without noticeable
side effects. The paper provides a classification of all known side-channel
attacks in JavaScript and identifies the required actions to prevent all of
them and possibly even future attacks. The research was published at
NDSS 2018 [152] in collaboration with Moritz Lipp and Daniel Gruss.

Double-fetch vulnerabilities are a special kind of race condition, where
a privileged environment fetches data multiple times from an unprivileged
environment, exposing the privileged environment to the risk of working
on inconsistent data. We were the first to show that Flush+Reload can
be leveraged to detect vulnerable code inside SGX enclaves and the kernel.
We showed that Flush+Reload cannot only be used to detect double-
fetch vulnerabilities, but also to reliably exploit them, which significantly
advanced the state of the art for such exploits. Moreover, we showed that
Intel TSX can be used to automatically prevent the exploitation of such
bugs due to the properties inherent to transactional memory. The paper
was published at AsiaCCS 2018 [148] in collaboration with Daniel Gruss,
Moritz Lipp, Clémentine Maurice, Thomas Schuster, Anders Fogh, and
Stefan Mangard.

We investigated how much information JavaScript engines leak about
the environment by developing a template attack which automatically
finds differences in JavaScript properties influenced by the environment.
In addition with 2 new side-channel attacks on the JavaScript engine, we
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showed that attackers can in most cases detect the exact browser version
and environment. This information can be used for fingerprinting, targeted
exploitation, and tailoring side-channel attacks to the specific environment.
The paper was published at NDSS 2019 [151] in collaboration with Florian
Lackner, and Daniel Gruss.

1.2 Other Contributions

While working on covert channels, we came up with techniques to ensure
error-free transmission for such channels, advancing the state of the
art in reliability [125]. We showed that with techniques from wireless
communication, cache-based covert channels can transmit data without
errors. We demonstrated that it is possible to establish an SSH connection
between two Amazon virtual machines by solely using the cache as the
transmission medium. The paper was published at NDSS 2017 [125]
in collaboration with Clémentine Maurice, Manuel Weber, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Kay Römer, and Stefan Mangard.

In response to multiple side-channel attacks against KASLR [68, 78,
96], we designed and implemented a new technique for operating systems
to manage virtual address spaces such that the kernel is better protected
against these and similar attacks. Our design unintentionally mitigated
Meltdown [114] as well and is now part of every modern operating system.
The paper was published at ESSoS 2017 [65] in collaboration with Daniel
Gruss, Moritz Lipp, Richard Fellner, Clémentine Maurice, and Stefan
Mangard.

We showed that the keystroke-timing attack we prevented [153] is not
only exploitable from native code, but also from JavaScript. By using
previously discovered timing primitives [150], we were able to mount
keystroke-timing attacks from the browser. The paper was published at
ESORICS 2018 [116] in collaboration with Moritz Lipp, Daniel Gruss,
David Bidner, Clémentine Maurice, and Stefan Mangard.

Our effort to show that Intel SGX can be abused to hide malicious
software resulted in a novel Rowhammer variant which can be hidden
inside SGX enclaves [62]. We were able to circumvent all published
countermeasures against Rowhammer, showing that more research is still
required to find effective countermeasures. Moreover, we showed that
the memory encryption of Intel SGX can also be exploited for a denial-
of-service attack. In a collaboration with Daniel Gruss, Moritz Lipp,
Daniel Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang Schoechl, and
Yuval Yarom, we presented several new techniques to make Rowhammer
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attacks more stable and stealthy in the paper, which was published at
S&P 2018 [62].

Use-after-free attacks are a class of attacks known for a long time in
many programming languages. We generalized these attacks, showing
that they apply to different scenarios. Moreover, we showed that email
addresses can also introduce use-after-free attacks. The paper was pub-
lished at AsiaCCS 2018 [71] in collaboration with Daniel Gruss, Matthias
Wübbeling, Simon Guggi, Timo Malderle, Stefan More, and Moritz Lipp.

After our stronger kernel protection [65], we further investigated attacks
on the kernel space. This led to the discovery that out-of-order execution
on Intel CPUs allows circumventing the privilege definition in page-table
entries, ultimately allowing an attacker to read arbitrary memory. The
class of attacks we introduced with this paper is now widely known
as Meltdown attacks. The paper was published at USENIX Security
2018 [114] in collaboration with Moritz Lipp, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg.

While working on Meltdown [114], we also identified security problems
caused by branch prediction and the subsequent speculative execution.
Leveraging these design problems also allowed reading the memory of
other applications. The class of attacks we introduced with this paper is
now widely known as Spectre attacks. This paper was published at IEEE
S&P 2019 [105] in collaboration with Paul Kocher, Jann Horn, Anders
Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, and Yuval Yarom.

With NetSpectre [155], we reduced the requirements for Spectre at-
tacks [105], such that no local code execution is required anymore. We
show that we can mount a variant of Evict+Reload over the network, and
exploit Spectre gadgets in a remote attack. Furthermore, we show that
Spectre does not require the cache to leak information by introducing
a new covert channel leveraging SIMD instructions. This paper was a
collaboration with Martin Schwarzl, Moritz Lipp, and Daniel Gruss and
was published at ESORICS 2019 [155].

In addition to reducing the requirements for Spectre attacks [155], we
also reduced the requirements for Rowhammer attacks, making it possible
to mount them remotely [115]. This paper is currently in submission and
is a collaboration with Moritz Lipp, Misiker Tadesse Aga, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster.

We showed that techniques from microarchitectural side-channel at-
tacks are also applicable to the operating-system layer. As operating
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systems also provide caches for pages loaded from the hard disk, we
showed that we can mount cache attacks on these software caches. This
paper was a collaboration with Daniel Gruss, Erik Kraft, Trishita Tiwari,
Ari Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh and
was published at CCS 2019 [66].

With Malware Guard Extension [154], we showed that side-channel
attacks can be mounted from SGX. SGX ROP [156] continues with the
idea of malicious enclaves and demonstrates that traditional malware can
be hidden inside SGX enclaves. Due to the asymmetry in the memory-
access model, SGX enclaves can mount return-oriented programming
(ROP) attacks on the host to execute arbitrary code. This paper was a
collaboration with Samuel Weiser and Daniel Gruss and was published at
DIMVA 2019 [156].

After demonstrating malicious SGX enclaves [156], we proposed a
generic defense similar to site isolation [171] and KAISER [65] to prevent
attacks from a large class of malicious enclaves. Our defense, SGXJail,
does not require any changes to existing enclaves. The paper was a
collaboration with Samuel Weiser, Luca Mayr, and Daniel Gruss and was
published at RAID 2019 [190].

With ScatterCache [193], we proposed a novel cache design which
breaks the direct mapping between addresses and cache sets, making
eviction-based attacks infeasible. Our cache design does not only prevent
Prime+Probe, Evict+Time, and Evict+Reload, but also outperforms
state-of-the-art caches for certain realistic workloads. The paper was
published at USENIX Security 2019 [193] in collaboration with Mario
Werner, Thomas Unterluggauer, Lukas Giner, Daniel Gruss, and Stefan
Mangard.

Since our discovery of Meltdown [114] and Spectre [105], many transient-
execution attacks were presented. We unified the naming scheme and
classified all existing attacks, which led to the discovery of new attacks
which were overlooked so far. We also classified and evaluated proposed
and existing defenses against transient-execution attacks. The paper was
published at USENIX Security 2019 [37] in collaboration with Claudio
Canella, Jo Van Bulck, Moritz Lipp, Benjamin von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.

As most defenses against transient-execution attacks turned out to
be incomplete, we proposed a novel generic defense based on annotating
secrets and taint tracking. Our defense tackles the root cause by preventing
secrets and values derived from secrets to be used in a transient execution.
The paper is currently in submission [149] and is a collaboration with
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Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella, and Daniel
Gruss.

After showing that Meltdown can leak memory from the line-fill
buffer [114], we showed with ZombieLoad [158] that this enables powerful
attacks allowing to leak data across all privilege boundaries, such as pro-
cesses, the kernel, SGX enclaves, and even virtual machines. The paper
was published at CCS 2019 [158] and is a collaboration with Moritz Lipp,
Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss.

We showed another transient-execution attack exploiting store-to-load
forwarding of the store buffer and its effects on the TLB. Exploiting a
missing permission check on Intel CPUs, we can abuse the store-to-load-
forwarding logic to spy on the TLB state of any address and break KASLR
within a few milliseconds. The paper is currently in submission [157] and
is a collaboration with Claudio Canella, Lukas Giner, and Daniel Gruss.

In another transient-execution attack, we showed that the store buffer
can be exploited to leak previously written data. This enabled us to leak
data written by the kernel such as AES keys. The paper is currently
in submission [126] and is a collaboration with Marina Minkin, Daniel
Moghimi, Moritz Lipp, Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank
Piessens, Berk Sunar, and Yuval Yarom.

1.3 Outline

This thesis consists of two parts. In the first part (Chapters 2 to 4), we
present on overview of the topic of this thesis, consisting of background,
state of the art, and conclusions.

Chapter 2 provides the background required for this thesis. Section 2.3
introduces side channels and microarchitectural side-channel attacks. Sec-
tion 2.1 explains virtual memory. Section 2.2 explains various types of
caches and how they work. Finally, Section 2.4 gives an overview of
sandboxing and isolation.

Chapter 3 gives an overview on the state of the art. In Section 3.1, we
discuss state-of-the-art microarchitectural attacks, including side-channel
attacks and transient-execution attacks. In Section 3.2, we discuss pro-
posed and implemented defenses against microarchitectural attacks.

In Chapter 4, we draw conclusions from our work and discuss future
work.

In the second part (Chapters 5 to 10), we present the main contribu-
tions, i.e., the publications which comprise this thesis.
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In Chapter 5, we present new timing techniques for JavaScript, which
were published as a conference paper at Financial Crypto 2017 [150].
In Chapter 6, we show how Intel SGX can be abused to hide cache
attacks completely, which is a conference paper published at DIMVA
2017 [154]. In Chapter 7, we demonstrate an efficient technique to prevent
keystroke-timing attacks, which is an NDSS 2018 conference paper [153].
In Chapter 8, we introduce a browser defense against all known microar-
chitectural and side-channel attacks in JavaScript, which is published as
an NDSS 2018 conference paper [152]. In Chapter 9, we are the first to
show benign cache attacks to detect double-fetch vulnerabilities, which
was published as a conference paper at AsiaCCS 2018 [154]. In Chapter 10,
we show how to automatically find side-channel information in browsers
exploitable for attacks, which is a conference paper published at NDSS
2019 [151]. In Chapter 11, we show a transient-execution attack leaking
data across all privilege boundaries, which is published at CCS 2019 [158].



2
Background

In this chapter, we provide the required background for this thesis. In
Section 2.1, we first explain the concept of virtual memory. In Section 2.2,
we explain caches in more detail, as cache attacks play a predominant role
in microarchitectural attacks, either as an attack primitive itself, or as
part of an attack. We explain the cache organization (Section 2.2.1), how
data is managed in caches (Section 2.2.2 and Section 2.2.3) and describe
caches of Intel x86 CPUs in detail (Section 2.2.4). In Section 2.3, we then
define side channels (Section 2.3.1) and microarchitecture (Section 2.3.2),
and discuss the general idea of side-channel and microarchitectural side-
channel attacks (Section 2.3.3). Finally, Section 2.4 provides background
on restricted environments, such as sandboxes and trusted-execution
environments.

2.1 Virtual Memory

With the rise of multi-processing, it became necessary to isolate different
processes, both from each other as well as from the operating system.
Thus, processes nowadays do not work directly on physical addresses,
i.e., addresses directly referring to the main memory, but instead on
virtual addresses. With virtual addresses, each process has its own virtual
address space which does not interfere with other processes. The processor

11
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Figure 2.1: On x86 64, every process has a 4-level page-table hierarchy used
for the translation from virtual to physical addresses by the MMU.
The CR3 register points to the first level of the page tables. The
virtual address is split into parts which are used to index the page
tables.

translates every virtual address of a process to a corresponding physical
access.

The translation from virtual to physical addresses relies on multi-level
page tables, which are defined per process. These page tables define a
process-specific mapping with a granularity of typically 4 KB, mapping
virtual pages to physical pages. In addition to this mapping, the page
tables also define permissions for every virtual page.

On 64-bit x86 CPUs, a virtual address has 48 bit and the CPU uses 4
levels of page tables for the translation from virtual to physical addresses.
An extension to 57-bit virtual addresses and 5 levels of page tables is
specified for newer processors and already supported by Linux. Figure 2.1
illustrates the multi-level page-table hierarchy. The first level, the Page-
Map Level 4 (PML4) is referenced by the process-specific processor register
CR3. The PML4 is basically an array consisting of 512 PML4 entries,
each of them 64 bit wide. Every entry contains several flags, e.g., whether
the entry is valid and thus refers to the next page-table level, the Page-
Directory Pointer Table (PDPT). The index into the PML4, i.e., which
PML4 entry is used, is determined by bits 47 to 39 of the virtual address.
The PDPT follows the same structure as the PML4, with 512 PDPT
entries. Starting from the PDPT, each entry specifies whether it directly
maps a physical page or whether it points to the next level of the page
tables. The PDPT entry used for the translation is determined by bits 38
to 30 of the virtual address. If the PDPT entry directly maps a physical
page, the size of the corresponding page is 1 GB, and the remaining 30
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bits of the virtual address are used as an offset into this page. Otherwise,
bits 21 to 29 of the virtual address are used to select the entry in the next
level, the Page Directory (PD). If the PD entry directly maps a physical
page, the size of the corresponding page is 2 MB, and the remaining 21
bits of the virtual address are used as an offset into this page. Otherwise,
bits 20 to 12 of the virtual address are used to select the entry in the next
level, the Page Table (PT). The remaining 12 bits of the virtual address
are used as an offset into the 4 KB page referenced by the PT entry.

As all paging structures are stored in memory, caches (cf. Section 2.2)
are used to reduce the number of memory accesses. Furthermore, the
Translation Lookaside Buffer (TLB) is a separate cache which caches the
result of recent translations from virtual to physical addresses.

2.2 Caches

In this section, we discuss how caches work. In Section 2.2.1, we describe
how caches are organized. Section 2.2.2 gives more details about how data
is stored in caches. Section 2.2.3 describes cache-replacement policies of
modern CPUs. Finally, Section 2.2.4 looks explicitly at caches in Intel
x86 CPUs.

2.2.1 Cache Organization

While the performance of CPUs increased, the performance of the main
memory (DRAM) did not increase with the same rate. Thus, DRAM is
the bottleneck for computation. As a consequence, caches were introduced
to get rid of this bottleneck.

Caches are small and fast buffers between the CPU and the DRAM.
Thus, all memory accesses go through the cache. Caches keep copies of
recently used data. If a memory access can be served from the cache, this
is called a cache hit. If the data for the memory access is not in the cache,
this is a cache miss, and it has to be served from DRAM.

Caches are usually organized in a cache hierarchy as illustrated in
Figure 2.2 for Intel CPUs. The fastest and smallest caches are directly
connected to the CPU core and are usually private to the core. The further
away caches are from the CPU, the larger and slower they are. Caches
are typically grouped into cache levels. The cache closest to the CPU is
called first-level (L1) cache, and it is usually followed by a second-level
(L2) cache. The last-level cache (LLC) is the slowest and largest cache
level and it is often shared among CPU cores.
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L1D L1I L1D L1I L1D L1I L1D L1I

L2 L2 L2 L2

L3 Slice 0 L3 Slice 1 L3 Slice 2 L3 Slice 3

Ring Bus
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Figure 2.2: The cache hierarchy on modern Intel CPUs. Every CPU core has
a private L1 cache which is statically split into an L1 instruction
(L1I) and L1 data (L1D) cache, and a private unified L2 cache. The
L3 cache (LLC) is split into slices. Every core can access one slice
directly and the other slices via a ring bus.

Inclusiveness. If a hierarchy of caches exists, these caches can either
be inclusive, non-inclusive or exclusive with respect to other cache levels.
An inclusive cache includes all data of the other cache levels to which the
inclusiveness property refers to. For example, if the L3 is inclusive to the
L1 cache, all data stored in the L1 cache must also be stored in the L3
cache. Exclusive caches ensure that data is always stored in exactly one of
the mutually exclusive cache levels. Non-inclusive caches do not provide
such strict guarantees. Data in non-inclusive caches might also be in other
cache levels.

2.2.2 Set-associative Caches

Most modern processors use set-associative caches as illustrated in Fig-
ure 2.3. There, the cache is divided into cache sets which are further
divided into cache ways. Each cache way in a cache set is called a cache
line.

The actual data is stored within the cache line which is also tagged.
The tag is used to check whether a cache way contains the requested data
and not unrelated data mapping to the same cache set.

Both the cache set and the tag are derived from the address of the
data, whereas the cache way is determined by the cache-replacement policy



2.2. Caches 15

Tag (Way 1) Data (Way 1)

Tag (Way 0) Data (Way 0)

Tag (Way 0) Data (Way 0)

Tag (Way 1) Data (Way 1)

Set #0

...

Set #2n − 1

n bits b bits

2n sets

2b bytes

Set

Line offset

0

1

1

0==

==
Tag

f

Data

Physical Address

Cache

Figure 2.3: A simple example of a two-way set-associative cache. The cache
set is determined by n bits of the memory address, the cache way
is determined by the cache-replacement policy. The lowest b bits of
the address are only used to address the byte inside a cache line.
The highest bits of the address are used as the tag.

(cf. Section 2.2.3). Different cache designs use different combinations of
virtual and physical address to calculate the set and tag. Mainly, there
are 2 types of caches: virtually indexed and physically tagged (VIPT), as
well as physically indexed and physically tagged (PIPT).

2.2.3 Cache-replacement Policies

As the size of the cache is limited and compared to the DRAM extremely
small, data in the cache has to be regularly replaced with data from
the DRAM. This is automatically done by the cache, transparent to the
applications.

For set-associative caches, the cache set is determined by a fixed set of
bits of the address of the memory access. For addresses mapping to the
same set, the cache-replacement policy decides in which cache way the
data is stored, and which cache way is replaced with the newly fetched
data.

As the cache-replacement policy has a significant impact on the overall
system performance, it is usually considered intellectual property and thus
not disclosed by CPU vendors. Common cache-replacement policies are
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least-recently used (LRU) and pseudo-random. These were used in older
Intel microarchitectures and ARM CPUs respectively.

Least-recently used keeps track of when the data in a cache way was
last accessed, and always replaces the cache way that has not been accessed
for the longest time. While this policy is relatively straightforward, it is
not so easy to implement. It also requires additional metadata to keep
track of the last access time. A pseudo-random policy is much simpler to
implement, as no additional metadata is required, and the performance is
not much worse.

Newer Intel processors use more sophisticated policies, which only
degrade to LRU in a worst-case scenario. Such adaptive policies are
Bimodal Insertion Policy (BIP) [142] or Quad-age LRU [95], a pseudo-
LRU variant which is easier to implement than LRU.

2.2.4 Caches on Intel x86 CPUs

The cache hierarchy of most Intel x86 CPUs is comprised of three levels,
as illustrated in Figure 2.2. The L1 cache is statically split in half into an
L1 data cache and an L1 instruction cache. The L1 cache is private to
one physical core and hence only shared among sibling hyperthreads. The
L2 cache is a unified cache that contains both data and instructions. The
L2 is also private to one physical core.

The LLC is split into slices and shared among all cores of the CPU.
Every physical core has direct access to one of the LLC slices, and access
to all other slices through the bus. To balance the load on the cache slices,
the CPU uses a simple hash function [124] to calculate the slice from the
physical address.

Until Skylake-X, the LLC is also an inclusive cache, meaning that all
data stored in the L1 and L2 is also stored in the LLC. The cache design
of the LLC changed with Skylake-X to a non-inclusive cache.

2.3 Side-Channel and Microarchitectural Attacks

Side-channel attacks are a class of attacks which do not directly attack
an application. Such attacks rather observe side effects of applications to
infer the processed data. While hardware-based side-channel attacks, e.g.,
power-analysis attacks, were long known, they were long not seen as a
threat to general-purpose commodity systems. The reason for this is that
they require an attacker to have physical access to the target as well as
sophisticated measurement equipment. However, recently, it was shown
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Figure 2.4: Different abstraction layers of a cryptographic algorithm (RSA
decryption). The mathematical description is proven to be secure,
however the software leaks timing information when e.g., imple-
mented using the non-constant-time square-and-multiply algorithm.
On the hardware level, there can even be leakage for constant-time
algorithms due to electrical properties of the hardware.

that side-channel attacks can also be mounted purely with software. This
reduced the requirements to local execution of unprivileged code.

In this section, we first define what we consider a side channel. Then,
we describe why the implementation of modern processors makes them
vulnerable to side-channel attacks, which are exploitable from software.

2.3.1 Side Channels

Side channels arise from implementation details, which are often caused
by abstraction layers. A simple example of an abstraction layer which
introduces side-channel leakage is illustrated in Figure 2.4 using a crypto-
graphic algorithm. The algorithm is mathematically proven to be secure,
and the software implementing the algorithm is free of software errors.
However, when implementing the algorithm in software, the runtime of
the algorithm depends on which bits in the secret keys are set. This arises
from the property that not all (mathematical) operations have the same
execution time on modern CPUs. The mathematical description is only
an abstraction of the actual software implementation, and this abstraction
introduces the side-channel information.

In this example, a side channel can also exist in a different layer.
Specifically, the abstraction of the instruction-set architecture (ISA) and
the actual hardware implementation. Even if the same instructions are
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used for different key bits, the power consumption can be correlated with
the number of bits set in the operand of the instructions.

Side-channel attacks exploit the leakage of data from such side channels.
In contrast to traditional attacks, which target, e.g., algorithms, protocols,
or implementation errors, side-channel attacks assume bug-free and correct
implementations. They often attack a layer which exists due to the
combination of abstraction layers and is thus not directly considered in
any specification.

2.3.2 Microarchitecture

The continuous performance optimizations of modern CPUs also lead to
increasing complexity of CPUs. While the ISA defines an abstraction
of the CPU, i.e., the CPU architecture, it does not define the actual
implementation. The implementation details of an ISA are defined by the
microarchitecture and vary between different CPUs which implement the
same ISA.

The microarchitecture is typically not visible to the programmer and
thus often not fully documented in detail. The same ISA can be imple-
mented in different ways, leading to different microarchitectures. For
example, Intel’s implementation details, i.e., the microarchitecture, of the
x86 ISA differ significantly between, e.g., their Core, Xeon, and Atom
CPUs. Similarly, AMD has different implementations, e.g., Bulldozer,
Zen, or Bobcat. Moreover, microarchitectural changes do not only exist
between different CPU types (e.g., desktop, server) but also between differ-
ent versions of the same CPU type. Thus, even if architectural parameters
of a CPU are the same (e.g., the same number of cores and same clock
speed), the performance can differ significantly due to microarchitectural
optimizations, e.g., branch prediction or out-of-order execution.

Although the microarchitecture is implementation specific, there are
various microarchitectural elements which are widely deployed as they
improve the performance of CPUs. Such elements include pipelines with
out-of-order execution to parallelize execution, caches to reduce the latency
of repeatedly used data (cf. Section 2.2), and various predictors to reduce
the stalling time of CPUs. Some of these elements have such a significant
impact on the performance that their parameters are explicitly stated for
the CPU, e.g., the number and respective sizes of caches. While improving
the performance of CPUs, they again introduce an abstraction layer in
CPUs, as their side effects are not specified in the ISA.
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A programmer as well as a compiler, however, are supposed to only
adhere to the specification of the ISA, and should not care about the
microarchitectural details. Taking the microarchitecture into account when
writing programs does not only impair the portability of the applications.
The ISA defines the guaranteed functionality of the underlying CPU
and is thus an abstraction of the underlying microarchitecture. Both a
developer as well as a user can rely on the stability of the ISA specification,
making programs compatible with all CPUs correctly implementing the
ISA. The microarchitecture can and does change without notice, thus
relying on specific microarchitectural properties reduces the portability
of an application. The same is true for microarchitectural elements –
developers cannot rely on the existence of specific microarchitectural
elements, such as the cache.

Hence, the microarchitecture has to be as transparent as possible,
i.e., it has to perform all optimizations without explicit help and even
knowledge of the developer. While this is beneficial for the performance
of CPUs, it again introduces side channels. For any optimization with a
visible performance impact, there is information leakage if the optimization
depends on data or meta data. That is, if any operation uses fewer
resources (e.g., power, time) for specific inputs, the observation of these
optimizations allows an attacker to infer information about the input.
Such information leakage is exploited in microarchitectural attacks.

2.3.3 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit information leakage, which
is specifically introduced by the microarchitectural implementation of a
CPU. In contrast to traditional side-channel attacks, microarchitectural
side-channel attacks are typically exploited solely from software.

The microarchitecture is designed to improve the performance of
applications. As performance is an essential factor for many applications,
there are several functionalities built into modern CPUs to measure
the performance of applications. There are both architecturally defined
measurement methods as well as microarchitecture-specific measurement
methods. Architecturally-defined methods include high-resolution time-
stamp counters which are exposed via the unprivileged rdtsc instruction
on x86. Microarchitectural methods include performance counters which
are exposed via special CPU registers, so-called model-specific registers
(MSRs). The granularity of microarchitectural measurement methods is
often even below the instruction level, allowing developers to measure
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performance bottlenecks caused by the microarchitecture. The granularity
of architectural measurement methods is usually limited by the CPU speed
(e.g., time-stamp counters), or the instruction level (e.g., exceptions).

While performance-measurement methods are obviously necessary to
measure the performance, they can be abused for microarchitectural side-
channel attacks. Specifically, in a microarchitectural side-channel attack,
an attacker application tries to infer information from a victim application
by monitoring side channels.

Microarchitectural side-channel attacks typically rely on the existence
of a microarchitectural element with the following properties:

P1 It is shared between attacker and victim application.

P2 Its state changes based on the processed data.

P3 The state can be inferred from (a combination of) side channels.

Microarchitectural elements only affect applications which use the
microarchitectural element. Thus, if the attacker and victim application do
not use the same microarchitectural element (P1), the attacker application
cannot infer anything about the victim application via the state of the
microarchitectural element.

Property P1 generally defines the scope of a microarchitectural side-
channel attack as illustrated in Figure 2.5 for a modern Intel x86 CPU.
Some microarchitectural elements are private to the CPU core (e.g.,
registers), shared among hyperthreads (e.g., L1 caches), shared among all
CPU cores (e.g., some last-level caches), or even shared among all CPUs
(e.g., main memory). Thus, the domain in which the element is shared
defines the domain in which the attacker can mount an attack.

Some microarchitectural elements optimize the performance of an
application independently of the processed data. An example for this
is a microarchitectural element which implements constant-time AES
encryption and decryption. However, many microarchitectural elements
achieve different performance optimizations depending on the processed
data (P2). For example, a data cache reduces the access latency for
recently used data, i.e., data the application used before. For these
elements, the current internal state is influenced by previously processed
meta data and data, and observing the internal states leaks information.

As microarchitectural elements usually do not provide an interface
to query their state, an attacker can only observe the internal state via
side channels (P3). In many microarchitectural side-channel attacks, the
timing is used as a side channel. That is, based on the execution time
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Figure 2.5: The multiple scopes of shared resources: private per thread, shared
among threads, shared across cores, and global resources visible to
the entire system.
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of an operation, an attacker can infer information on the internal state
of a microarchitectural element. The execution time often depends on
whether the element can optimize a specific operation, or cannot optimize
a specific operation anymore due to actions of the victim application (e.g.,
memory access, control-flow prediction).

Sometimes the timing cannot directly be measured, but an indirection
is required to observe side-channel information. For example, an attacker
can infer information about the internal state of a control-flow predicting
mechanism such as the branch predictor by observing the memory access
time of subsequent instructions.

Summarizing, for microarchitectural side-channel attacks, an attacker
relies on a microarchitectural element fulfilling P1, P2, and P3. Then,
the observed leakage can be used to infer information about a victim
application.

2.4 Sandboxing and Isolation

Sandboxes provide a restricted environment for executing typically un-
trusted code. A sandbox strictly controls the resources available to the
code running inside the sandbox. This control can be enforced by the
hardware, operating system, runtime environment, or design of the lan-
guage itself. While there are multiple different types of sandboxes, we
focus mostly on JavaScript in this thesis.

Isolation is orthogonal to sandboxing. Sandboxes solve the problem of
running untrusted code inside a trusted environment. Isolation, however,
solves the problem of running trusted code inside an untrusted environment.
As the hardware is usually assumed to be trusted, isolation is often enforced
by the hardware, e.g., process and kernel isolation, trusted execution
environments, or hardware security modules. In this thesis, we focus
mostly on Intel SGX as an isolation technique as it is commonly available
on modern Intel CPUs.

2.4.1 JavaScript

JavaScript is a scripting language extensively used on the web and thus
supported by most modern browsers [183]. JavaScript programs are
generally untrusted and executed automatically when opening a website.

To prevent any harm to the system, scripts are only run inside the
JavaScript sandbox. Furthermore, the language itself already provides
good sandboxing by only providing limited functionality. JavaScript
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Figure 2.6: In the SGX model, applications are split into a trusted (enclave)
and an untrusted (host) part. The hardware prevents any access
to the trusted part. The only communication between enclave and
host is via predefined ECALLs and OCALLs.

does not expose the concept of memory addresses and pointers to the
programmer, and there is no interface to the operating system, e.g.,
syscalls.

Hence, while JavaScript is designed to prevent traditional exploits, its
limitations also impede microarchitectural attacks. In most browsers, there
are no high-resolution timers available anymore [150]. Thus, observing
timing differences in JavaScript is not straightforward.

2.4.2 Intel SGX

Intel Software Guard Extension (SGX) is an x86 instruction-set exten-
sion introduced with the Skylake microarchitecture for isolating trusted
code [83]. With Intel SGX, applications are split into a trusted enclave
and an untrusted application (cf. Figure 2.6). The CPU fully isolates the
trusted enclave, and neither the application nor the operating system can
access the enclave’s memory. Furthermore, to protect against bus-probing
attacks on the DRAM bus and cold-boot attacks, the memory range used
by SGX is encrypted via transparent memory encryption.

The application and enclave can only communicate through a well-
defined interface. Using the eenter function, applications can call func-
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tions provided by the enclave. The hardware prevents any other access
to the enclave. In the attacker model of Intel SGX, only the hardware is
trusted. All software, including the operating system, is assumed to be
compromised and, therefore, untrusted.

Although SGX enclaves run native code, there are several restrictions
for enclaves to reduce the attack surface [83]. Enclave code cannot use
any I/O operations, including syscalls. Thus, any communication with
the operating system is only possible by using the untrusted application
as a proxy. Moreover, certain other instructions are not supported, such
as rdtsc. Hence, Intel SGX also impedes microarchitectural attacks.
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State of the Art

In this chapter, we discuss state-of-the-art microarchitectural attacks and
defenses. In Section 3.1, we discuss microarchitectural side-channel attacks
and transient-execution attacks. In Section 3.2, we discuss the defenses
against microarchitectural side-channel attacks and transient-execution
attacks.

3.1 Software-based Microarchitectural Attacks

Software-based microarchitectural side-channel attacks exploit leakage
from the state of microarchitectural elements. The predominant microar-
chitectural element for attacks is the cache, as caches are well documented,
encode a large state, and their state is comparably easy to observe in
software. However, there are also state-of-the-art attacks on different
microarchitectural elements, namely predictors and DRAM. Moreover,
transient-execution attacks are a novel class of extremely powerful microar-
chitectural attacks using microarchitectural side channels as a building
block.

3.1.1 Cache Attacks

Cache attacks exploit the fundamental property of caches that data residing
in the cache can be accessed faster than data not residing in the cache.

25
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There are different methods of how an attacker can abuse this property
to infer whether a specific memory location resides in the cache. Cache
attacks exploit the observation that the information whether a specific
memory location is in the cache often correlates with the activity of the
victim application, thus leaking information about the victim application.

Cache attacks can be divided into three main categories. For the first
type of cache attacks (Evict+Time), the attacker modifies the cache state
and monitors the runtime of the victim. In the second type of cache
attacks (Prime+Probe), the attacker brings the cache into a known state
and monitors whether the victim execution influenced this known state
without directly observing memory accesses of the victim. In the third
type of cache attacks (Flush+Reload), the attacker measures cache-state
changes directly on memory which is shared with the victim, e.g., shared
libraries.

Evict+Time

The first cache attacks [27, 136] targeted cryptographic algorithms and
were generalized as Evict+Time by Osvik et al. [132]. With Evict+Time,
an attacker manipulates the cache state by evicting a specific cache set of
the victim from the cache. Then, the attacker monitors the runtime of the
victim, trying to detect timing differences in the execution time. If the
attacker measures a difference in the runtime, the attacker can conclude
that the victim accessed data which maps to the evicted cache set.

Evict+Time has been used to attack OpenSSL AES on x86 [132, 174],
as well as on mobile ARM platforms [113, 163]. Hund et al. [78] exploited
Evict+Time to de-randomize the kernel address space, and Gras et al.
[60] exploited it to break ASLR from JavaScript.

Eviction sets To target a certain cache set for the eviction, eviction-
based attacks require an eviction set and an eviction strategy. By accessing
the addresses of the eviction set with a specific strategy, the current data
of the targeted cache set is evicted from the cache.

The cache set is typically directly determined by several bits of the
physical address. On CPUs without cache slices, this makes it easy to
generate the eviction set [113, 132, 163]. Modern x86 CPUs1 additionally
partition the last-level cache using cache slices. The mapping from physical
addresses to cache slices is not documented. However, it has been reverse

1Intel introduced cache slices with the Sandy Bridge microarchitecture
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engineered for multiple CPUs using performance counters [124] and timing
measurements [64, 78, 81, 92, 119, 202].

Nowadays, physical addresses are not exposed to an unprivileged
attacker anymore. Hence, creating eviction sets is not straightforward.
State-of-the-art approaches rely on a combination of static and dynamic
approaches to find eviction sets [181]. Several attacks exploit large 2 MB
pages [69, 91, 119, 125, 150]. There, the least-significant 21 bits of the
physical and virtual address are the same, which is sufficient to determine
the cache set. More generic variants only rely on timing and can even
be mounted from JavaScript [32, 60, 131, 181]. We show that the time
to generate an eviction set can be further improved by combining timing
information with side-channel information from the DRAM [154].

For older CPUs, it is sufficient to simply access all addresses in the
eviction set. However, modern CPUs use more complex cache-replacement
policies, requiring different strategies for accessing eviction sets. Gruss et al.
[69] and Briongos et al. [36] present different eviction strategies for multiple
CPUs and methods to find and evaluate such strategies.

Prime+Probe

Prime+Probe was also first used on cryptographic algorithms [27, 136]
and generalized by Osvik et al. [132]. It is a more generic, and thus more
powerful, cache attack, as it does not require the indirection of measuring
the victim’s execution time. Similarly to Evict+Time, Prime+Probe also
requires eviction of a specific cache set.

Figure 3.1 illustrates the steps of a Prime+Probe attack. The basic
idea of Prime+Probe is to populate (“prime”) a cache set with attacker-
controlled data ( 1 ). If the victim accesses data that falls into this cache
set, the CPU has to evict the attacker data and replace it by the victim
data ( 2 ). Then, the attacker probes the cache state by priming it again
and measuring how long it takes ( 3 ). If the victim caused any attacker-
controlled data to be evicted from the cache set, this step takes longer
as compared to the case where the cache set is still populated with only
attacker-controlled data.

Prime+Probe attacks have first been demonstrated on the L1 cache [136].
Most Prime+Probe attacks on the L1 cache target cryptographic algo-
rithms [56]. Attacks have been demonstrated on both the L1 instruction
cache [2, 5, 7, 209] as well as the L1 data cache [1, 3, 4, 30, 174].

With the reverse engineering of the cache slicing functions, in addition
to the inclusiveness of the last-level cache, Prime+Probe attacks became
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Figure 3.1: In a Prime+Probe attack, the attacker fills a target cache set with
data (“prime”). If the victim accesses data in this cache set, the
attacker data is evicted. The next time the attacker fills the cache
set (“probe”), the time depends on whether the victim evicted the
attacker data.

possible on the last-level cache as well. Ristenpart et al. [144] were the first
to mount a Prime+Probe attack on the last-level cache on older CPUs.
Maurice et al. [123] presented a Prime+Probe covert channel on modern
Intel CPUs. Similar to attacks on the L1 cache, most Prime+Probe
attacks exploiting the last-level cache target cryptographic algorithms,
such as AES [91, 97, 113] or ElGamal [80, 119]. Oren et al. [131] presented
the first Prime+Probe attack from JavaScript to spy on user behavior.
Genkin et al. [57] showed that Prime+Probe attacks are also possible from
PNaCl and WebAssembly. With Multi-Prime+Probe [153], we improved
state-of-the-art Prime+Probe-attacks by spying on multiple cache sets in
parallel, enabling reliable attacks on user input.

Prime+Probe attacks on the last-level cache have also been studied in
cloud scenarios, both as side channels [209] as well as covert channels [125,
197, 198].

As Prime+Probe attacks do not require any form of shared memory or
access to the victim, they have also been used to attack trusted execution
environments such as Intel SGX. In concurrent work, Brasser et al. [33],
Moghimi et al. [127] and Götzfried et al. [59] showed how a malicious
operating system can leverage Prime+Probe to leak secrets from SGX. In
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Figure 3.2: In a Flush+Reload attack, the attacker flushes a shared cache line
out of the cache (“flush”). If the victim accesses the cache line, it
is brought back into the cache. A subsequent access of the attacker
(“reload”) is then faster.

addition, we also showed that Prime+Probe can be mounted from inside
an SGX enclave, showing the first malicious enclave [154].

In addition to Prime+Probe as an attack by itself, it has also been
used as a building block for transient-execution attacks [173].

Flush+Reload

Gullasch et al. [73] described the first flush-based attack, which led to the
generic Flush+Reload attack introduced by Yarom et al. [201]. Flush+
Reload is considered an extremely powerful cache attack, as it is basically
noise-free and has cache-line granularity.

Flush+Reload exploits the fact that on x86, the clflush instruction
is an unprivileged instruction which allows flushing a specific cache line
from the cache. Moreover, as the cache works with physical addresses,
shared memory is only once in the cache. Thus, flushing it in one process,
flushes it for all processes.

Figure 3.2 illustrates the Flush+Reload attack. The attacker targets
a memory region shared with the victim, e.g., a shared-memory segment.
First, the attacker flushes the shared memory location from the cache
using the clflush instruction ( 1 ). If the victim accesses the shared
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memory location, it is cached again ( 2 ). Then, the attacker measures
how long it takes to access the shared memory location ( 3 ). If it is fast,
the attacker learns that the victim has accessed it. Otherwise, the attacker
knows that the victim has not accessed the shared memory location.

Flush+Reload does not require knowledge of physical addresses, as
clflush uses virtual addresses. Moreover, there is no eviction required.
The target can be directly flushed from the cache. As both the access and
the flushing are reliable operations, and data is unlikely to be cached by
accident (e.g., due to hardware prefetching or misspeculation), Flush+
Reload is an extremely reliable cache attack.

As Prime+Probe and Evict+Time, Flush+Reload has been used for
attacks on cryptographic algorithms [10, 12, 26, 55, 63, 73, 89, 93, 137,
140, 200, 201] as well as on user behavior [63, 113, 185, 209].

Due to its robustness, Flush+Reload is also used as a building block
for other attacks, mainly as the covert channel for transient-execution
attacks [37]. We showed that Flush+Reload can also be used for benign
use cases, such as detecting double-fetch bugs [148].

Flush+Flush Gruss et al. [64] demonstrated a variant of Flush+Reload
which exploits timing differences of the clflush instruction. Hence,
instead of measuring how long it takes to reload the data (cf. Figure 3.2,
3 ), the attacker measures how long it takes to flush the data.

Flush+Flush has been used to build attacks on cryptographic algo-
rithms [35, 64], user behavior [64], and page tables [177].

Evict+Reload In certain environments, e.g., in JavaScript, there is
no instruction to flush a specific cache line. Evict+Reload is a variant
of Flush+Reload, where the flush (cf. Figure 3.2, 1 ) is replaced by
eviction [63, 113].

Evict+Reload enabled Flush+Reload-type attacks on ARM processors
without a flush instruction [113]. Moreover, Evict+Reload is used to
mount cache attacks on the own process from JavaScript, which does not
provide access to the flush function [60, 105, 146, 157].

TLB Attacks

Besides attacks on data and instruction caches, there are also attacks
exploiting timing differences in the page-translation caches, i.e., TLBs. As
with data and instructions caches, TLBs also expose measurable timing
differences for cached and uncached translations. Hence, an attacker can
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deduce from the time it takes to read from an address whether the address
translation is present in the TLB.

These timing difference have been exploited to de-randomize the kernel
address space [68, 78, 96, 157], attack cryptographic algorithms [61], and
spy on user behavior [157]. Van Schaik et al. [178] leverage the MMU for
building cache-eviction sets by exploiting that page tables are cached, and
that the MMU accesses these cached page tables in a deterministic way.

3.1.2 Attacks on Predictors

Modern CPUs use several prediction mechanisms to avoid pipeline stalls.
These predictors include branch predictors, prefetchers, and memory-
aliasing predictors. As predictions are based on previously observed data,
an attacker can often infer information from observing the predictions.

Branch predictors were first exploited by Acıiçmez et al. [6, 8] by
measuring differences in the execution time of a victim on branch mis-
predictions. They also presented a variant in which a victim’s update
to the branch predictor evicts one of the spy branches, leading to a mis-
prediction in the spy. This is even the case for victims running inside
SGX enclaves [51, 111]. Cock et al. [44] observed that the number of
branch mispredictions can be monitored through a cycle counter on ARM.
Evtyushkin et al. used the branch-prediction side channel to build a covert
channel [52] and to break ASLR [53]. With Spectre [105], we showed that
branch predictors can also be leveraged for transient-execution attacks to
leak actual data.

In addition to branches, CPUs also predict future memory accesses and
already cache the predicted memory locations ahead of time. Wang et al.
[184] reverse engineered the prefetcher on the Intel Atom in-order CPUs to
reduce the prefetcher interference when mounting Prime+Probe attacks.
Prefetchers have also been reverse engineered on out-of-order Intel CPUs
and exploited to attack cryptographic algorithms [28, 161]

Another prediction mechanism used for microarchitectural attacks is
the memory-aliasing prediction, also known as memory disambiguation.
This prediction mechanism in out-of-order CPUs tries to ensure that a
load (partially) depending on a previous store gets its value from the most
recent store, and not a stale value from the cache. Modern CPUs use
store-to-load forwarding, where the the store buffer is used to directly
forwarded a store to the respective load. Mispredictions in the store-to-
load forwarding logic were exploited to build a covert channel [166] and to
learn physical addresses [94]. We showed that the store-to-load forwarding



32 Chapter 3. State of the Art

Attacker Victim

open

access
accessaccess

Row Buffer

Victim

Attacker

Attacker

Victim

Victim

Attacker1

3

2

vs

Victim accessed

(fast)

Victim did not access

(slow)

Figure 3.3: In a DRAMA attack, the attacker exploits that DRAM banks are
shared among attacker and victim, and that the row buffer acts as
a cache.

misses permission checks, allowing to de-randomize the kernel address
space and break ASLR from JavaScript [157].

3.1.3 DRAM Attacks

The DRAM is another microarchitectural element which can be abused
for microarchitectural side-channel attacks. Especially as the DRAM
is shared among multiple CPUs, DRAM-based attacks can be mounted
across CPUs. DRAM modules contain row buffers which act as caches for
the rows in the DRAM. Every read requires the data to be copied from
the destination row to this buffer. As with CPU caches, accessing data
which is already in the row buffer results in faster access times.

Pessl et al. [139] introduced the DRAMA attack, a side-channel attack
which exploits the timing differences caused by the row buffer. Figure 3.3
illustrates the basic concept of a DRAMA attack. First, the attacker
accesses attacker-controlled data residing in a DRAM row ( 1 ). If the
attacker accesses data which falls into a conflicting DRAM row ( 2 ), i.e.,
a different row in the same DRAM bank [139], the row-buffer content is
replaced with this row. Finally, the attacker accesses attacker-controlled
data, which are in the same row as the victim data and measures the
access time ( 3 ). If the access is fast, the attacker knows that the victim



3.1. Software-based Microarchitectural Attacks 33

accessed data in this row, as the row is in the row buffer. Otherwise, the
row buffer content has to be replaced for the current access, which results
in a slower access.

We showed that DRAMA attacks are even possible in JavaScript by
building a DRAM-based covert channel [150]. We also demonstrated that
the DRAM side channel can be used to learn parts of the physical address
in Intel SGX enclaves [154].

3.1.4 Transient-Execution Attacks

Transient-execution attacks are a class of microarchitectural attacks ex-
ploiting out-of-order and speculative execution of modern CPUs to leak
data. Transient-execution attacks rely on computations which were never
intended in an application’s control flow. Such computations by transient
instructions can be a result of mispredictions in the control or data flow,
or out-of-order execution after an exception. While these transient in-
structions are never committed to the architectural state, they may show
side effects in the microarchitectural state. These side effects can then be
made visible in the architectural domain using traditional side-channel
attacks.

With Meltdown [114] and Spectre [105], we presented the first transient-
execution attacks, exploiting out-of-order and speculative execution re-
spectively.

Spectre

Spectre is a class of transient-execution attacks exploiting control- and
data-flow mispredictions of CPUs. By triggering such a misprediction,
Spectre attacks transiently execute code to access data that is architec-
turally accessible but never reached. Subsequently, Spectre attacks encode
the accessed data in the microarchitectural state, e.g., in the cache. An
attacker can then rely on traditional side-channel attacks to transfer the
microarchitectural state to the architectural state.

Figure 3.4 illustrates the basic idea of a Spectre attack using Spectre-
PHT [105] (also known as Spectre v1) as an example. First, the attacker
mistrains a conditional branch used for an out-of-bounds check, e.g., by
providing multiple valid values. Then, when the attacker provides an
out-of-bounds value ( 1 ), the CPU mispredicts the conditional jump ( 2 ).
This leads to a transient out-of-bounds access to the data ( 3 ). The
accessed data can then be encoded into a microarchitectural state, e.g.,
by caching a shared memory location corresponding to the value of the
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Figure 3.4: In a Spectre attack, an attacker manipulates a branch predictor
such that the victim accesses and encodes data which is normally
not accessed. Using a side-channel attack, the attacker recovers the
encoded data.

leaked data ( 4 ). Finally, the attacker can use a side-channel attack to
probe the microarchitectural state and infer the leaked data value.

We showed the first Spectre attacks exploiting the branch-target buffer
(BTB) and the pattern-history table (PHT) [105]. Further Spectre variants
also exploit the PHT [101] as well as the return-stack buffer (RSB) [110,
121] and memory-aliasing predictor [75]. As a side channel for recovering
the leaked data value, we used Flush+Reload [105], Evict+Reload [155]
as well as timing differences caused by the AVX unit [155]. Other side
channels that have been shown to work are Prime+Probe [173] and port
contention [29].

Spectre attacks have also been demonstrated to leak values from
SGX [40, 129] and the system management mode [50]. We showed
that Spectre attacks can be mounted from JavaScript [105] and even
remotely [155].

Meltdown

Meltdown is a class of transient-execution attacks exploiting transient
instructions caused by out-of-order execution after an exception. On af-
fected CPUs, memory loads triggering an exception still return data which
can be used in the transient execution to encode it in a microarchitectural
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Figure 3.5: In a Meltdown attack, an attacker exploits that the CPU forwards
inaccessible data to transient instructions caused by an exception.
The data can then be encoded in a microarchitectural state, from
which the attacker can recover it using a side-channel attack.

state. After the exception is handled (or suppressed), an attacker can
again use a side channel to transfer the microarchitectural state into the
architectural state.

Figure 3.5 illustrates the basic idea of a Meltdown attack based on
Meltdown-US, i.e., the original Meltdown attack [114]. The attacker
accesses a memory location which results in a fault ( 1 ), e.g., a kernel
address. Although the fault ensures that subsequent instructions are
not executed architecturally, they are still executed out of order ( 2 ).
Moreover, on affected CPUs, the loaded data is forwarded to these transient
instructions and can thus be encoded in a microarchitectural element,
such as the cache ( 3 ). Finally, the attacker can use, e.g., Flush+Reload
to recover the leaked values.

With Meltdown [114], we showed the first Meltdown attack which broke
the process isolation, allowing an attacker to read arbitrary kernel-memory
locations. This attack exploited the lazy enforcement of the user-accessible
permission in the page table. Van Bulck et al. [176] exploited the present
bit in the page table to attack Intel SGX enclaves. Their attack can also be
mounted from virtual machines to leak hypervisor data [192]. Meltdown
has also been shown using other bits in the page table causing exceptions,
such as the read-only bit [101], and memory-protection keys [37]. Other
exceptions which have been used for Meltdown attacks are the device-
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not-present exception to leak from floating-point registers [164], and
bounds-checking exceptions to read out-of-bounds values [37].

Transient exceptions, such as microcode assists [158] have also been
exploited for Meltdown attacks. Van Schaik et al. [146] and we [158]
demonstrated Meltdown attacks on the line-fill buffer and load port,
leaking data currently used by the current and sibling hyperthread. We
also showed a Meltdown attack on the store buffer to leak values recently
written by the current hyperthread [126].

3.2 Defenses against Software-based Microarchi-
tectural Attacks

While side-channel leakage can be reduced by reducing the sharing of
resources, this is in most cases not a practical solution. Hence, there are
various proposals to reduce or even altogether remove side-channel leakage
using various defense strategies.

We can classify defenses against software-based microarchitectural
attacks based on where they are implemented: in the software layer,
system layer, or in the hardware. Several countermeasures also require
the interaction of multiple layers, i.e., software and operating support
for modified hardware. Due to their severity, generic countermeasures
against transient-execution attacks are widely deployed on all of the
three layers. In contrast, generic countermeasures against traditional
side-channel attacks are not that widespread and mainly implemented in
cryptographic libraries and browsers.

3.2.1 Software Layer

Software-layer countermeasures can be applied by the application itself to
protect against microarchitectural side-channel attacks.

Constant Time. In addition to introducing cache-timing attacks, Bern-
stein [27] also emphasized to implement cryptographic algorithms that
run in constant time. Constant-time implementations were also shown to
mitigate side-channel leakage in later works [45, 209]. Agosta et al. [9]
argued that side-channel leakage can be eliminated if there are no secret-
dependent memory accesses or branches. Andrysco et al. [18] presented a
side-channel free library for floating-point operations.

While algorithms without secret-dependent memory accesses and
branches protect against side-channel attacks, they are not easy to write.
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Several tools have been proposed to verify whether an implementation is
constant time [13, 49, 63, 109, 143, 189, 195, 204]. Still, several proclaimed
constant-time implementations turned out to be not completely constant
time [55, 137, 189, 191].

Detection. Different proposals suggest to detect side-channel attacks
and abort the computation in such a case. The advantage of these
approaches is that they are more generic, as it is not necessary to find a
constant-time variant of an algorithm.

To reliably detect cache attacks, Gruss et al. [70] leverage Intel TSX
to automatically abort cryptographic operations if data is evicted from
the cache. SGX enclaves can also leverage TSX to detect side-channel
or controlled-channel attacks on page tables, and consequently abort any
ongoing operation [160, 165].

Confining Speculation. Spectre attacks trick the victim application
into accessing memory, which should not be accessed in a normal control
flow. Hence, if an application wants to protect itself against Spectre
attacks, it has to ensure that misspeculations do not leak secrets.

One possibility for Spectre-PHT is to stop speculation using memory
fences after vulnerable branches [16, 24, 37, 82]. For Spectre-BTB, the
branch predictor can be tricked into always misspeculating to a safe
location [175]. Another possibility is to confine the speculation target to
only safe locations by arithmetically applying bitmasks to array indices [39].
If enabled, memory fences are automatically generated by the Microsoft
compiler [104, 105]. Both GCC and LLVM support the confinement using
bitmasks [39, 120].

3.2.2 System Layer

System-layer countermeasures are provided by the environment in which
vulnerable applications are executed. This can be the operating system,
hypervisor, or a runtime environment.

Impair Timing Measurement. To impair side-channel attacks relying
on timing differences, a system can introduce noise into the measurements
of an attacker. Hu [76] proposed fuzzy time, which introduces noise into
any event measurable by an attacker. This concept was later implemented
in the Xen hypervisor [180] and proposed as a hardware modification [122].
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The concept of fuzzy time was also proposed for browsers [107, 152] and
is implemented in most major browsers [11, 31, 43, 138, 182].

However, even if the environment does not provide a high-resolution
timer, an attacker can build a timer using shared data and concurrency [44,
194]. Such self-built timers have been used for attacks on ARM devices
without access to a high-resolution timer [113]. We also showed that a
variable, which is continuously incremented by a thread, can be used as
a timing primitive in Intel SGX where no other high-resolution timer is
available [154]. In concurrent work, Gras et al. [60] and we [150] showed
that such a timer can also be built in JavaScript, which is now state of
the art for attacks in JavaScript.

There are multiple proposed solutions to limit the theoretic leakage
rate by hiding timing differences from an external observer. This can be
accomplished by bucketing, i.e., always padding times to multiples of a
pre-defined bucket size [108, 205]. Li et al. [112] proposed to run three
replicas of the system and return the average execution time to an external
observer. Wu et al. [196] extended the virtual-time-based deterministic
execution frameworks from Aviram et al. [25] and Ford et al. [54], limiting
the theoretical leakage rate to 1 Kb/s. Kohlbrenner and Shacham [107]
applied the concepts to browsers to ensure that all operations appear
deterministic.

Adding Noise. Instead of adding noise to the timing primitives, noise
can also be added to the observed event. Brickel et al. [34] proposed
to randomize and prefetch lookup tables for AES computation to make
attacks harder. However, for events which can be repeatedly observed by an
attacker, adding noise only increases the number of required measurements.
Using statistical methods, statistically independent noise can be averaged
out by combining multiple traces [119, 155].

For one-time events, however, adding noise can make attacks infeasible.
We showed that by injecting artificial keyboard interrupts, we can ensure
that the interrupt density is uniform over time, making side-channel
attacks on keystroke timings infeasible [153]. Similarly, adding noise to
other user inputs have also been shown to make side-channel attacks
infeasible [162].

State Flushing. One possibility to prevent information leakage through
a microarchitectural state is to ensure that the state is flushed before the
attacker can exploit it [208]. Exiting Intel SGX enclaves flushes the TLB
to not leak information about enclave memory accesses [47]. Similarly,
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switches into the kernel flush the return-stack buffer and the branch-target
buffer to prevent Spectre attacks from the user space [19, 46, 87, 100].

Godfrey and Zulkernine [58] proposed that cloud providers flush the
entire cache hierarchy if the CPU switches security domains. To prevent
Foreshadow-VMM [192], virtual machines flush the L1 cache on VM
exit [84]. Additionally, to prevent RIDL [146], ZombieLoad [158] and
Fallout [126], every context switch has to also flush the store buffer,
load ports, and line-fill buffer [85]. However, all these mitigations are
only sufficient if an attacker cannot mount an attack in parallel, e.g.,
on a hyperthread. Hence, the system has to ensure that only mutually
trusted processes are scheduled on the same physical core [85], or that
time slices are long enough that the attacker cannot interrupt the victim
computation [179].

Partitioning. Reducing the sharing of resources can also reduce the
leakage observable through side-channel attacks. To prevent the sharing
of cache sets, and thus mitigate Prime+Probe, Shi et al. [159] proposed
cache coloring. With cache coloring, mutually untrusted applications do
not share cache sets with each other. Costan et al. [47] showed that this
also helps to protect the trusted-execution environment from cache attacks.
Kim et al. [99] and Cock et al. [44] demonstrated that cache coloring
has only a small performance overhead. However, it has a large memory
overhead, as cache coloring statically splits the cache into partitions.

Instead of partitioning the cache by cache sets, Intel CAT allows
partitioning the cache by cache way. Liu et al. [118] leveraged Intel CAT
to mitigate cache-based side-channel attacks in the cloud. Zhou et al.
[211] showed that cache partitioning can also prevent cache-line sharing
in the cloud.

To prevent attacks from hyperthreads, processes can be scheduled
to ensure mutually untrusted applications are not running on the two
hyperthreads of the same physical core [85, 133, 147]. This was also
demonstrated for Intel SGX [130].

To mitigate transient-execution attacks, the system can ensure that
secrets are not mapped into the attacker’s address space. We proposed
KAISER [65] to split the kernel and the user space into two different ad-
dress spaces. KAISER is implemented in all major operating systems [37]
to prevent Meltdown-US [114]. A similar approach has been shown for
virtual machines [77]. Instead of preventing Spectre attacks, Chromium
relies on site isolation, which ensures that no secrets are mapped into the
attacker’s address space [171].
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Blocking Functionality. Certain functions which are used for attacks
can be blocked by the system. On ARM, the operating system can decide
to prevent unprivileged programs from using the flush instruction [113].
This prevents Flush+Reload attacks, and an attacker has to resort to
eviction-based attacks such as Evict+Reload.

Linux removed the unprivileged access to the pagemap [103] which is
used by applications to translate virtual addresses to physical addresses.
This impairs attacks requiring knowledge of physical addresses, such as
Evict+Reload or Prime+Probe.

Vattikonda et al. [180] blocked direct access to the timestamp counter
in the Xen hypervisor. We showed that blocking direct access to timing
sources and other functions commonly used for side-channel attacks is
also a possibility in JavaScript [152].

Safe Speculation. In theory, Spectre attacks can be mitigated by
turning off all speculation features in CPUs. However, in practice, this is
neither possible nor desirable for performance reasons. We showed that
marking secret values as uncachable prevents transient execution from
accessing and hence leaking them [149].

Detection. An alternative to preventing attacks is to detect attacks.
Irazoqui et al. [90], proposed MASCAT, a static-analysis framework to
scan binaries for side-channel attacks similar to antivirus software.

A dynamic approach is to mount dummy attacks and see whether there
is any interference from real attacks [63, 79, 210]. For the detection of
ongoing attacks, performance counters can provide useful data, especially
the number of cache hits and misses [41, 64, 74, 128, 208]. Payer et al.
[135] presented a framework to combine multiple performance counters
for detecting ongoing attacks. Demme et al. [48] used these performance
counters to detect malware, which was later improved by leveraging
machine learning [169].

Performance counters can also be used to detect cross-VM attacks.
Cardenas et al. [38] and Zhang et al. [207] leveraged performance counters
to detect denial-of-service attacks. Zhang et al. [206] and Chouhan and
Hasbullah [42] leveraged performance counters to detect cross-VM side-
channel attacks. Paundu et al. [134] proposed to use hypervisor events in
combination with machine learning to detect cache attacks.

However, these detection methods suffer from false positives and false
negatives [56]. Moreover, attackers can adapt their attacks or find new
attacks which are not easily detectable through performance counters [64].
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We also showed that trusted-execution environments, such as Intel SGX,
can be abused to protect attacks from being detected [154].

3.2.3 Hardware Layer

Various countermeasures proposed on the hardware layer try to either
get rid of the root cause of a microarchitectural side channel or make it
infeasible to exploit it.

Constant Time. Microarchitectural side-channel attacks exploiting
runtime differences in certain instructions can be prevented by making
the instructions execute in constant time. Gruss et al. proposed this for
the clflush instruction to mitigate the Flush+Flush attack [64] and for
the software-prefetch instructions to mitigate prefetch-based attacks [68].

With ARMv8.5, ARM supports a Data-Independent-Timing (DIT)
bit in the processor-state register to make supported instructions run in
constant time [21]. If enabled, the runtime of instructions does not depend
on the data operated on. With the conditional-move instruction family
(CMOVxx), Intel also provides a constant-time operation which can be used
for implementing side-channel-resistant cryptographic algorithms [86].

Wang et al. [186] proposed to change the row-buffer policy of the
DRAM controller to always close a DRAM row. This might eliminate the
timing differences exploited in DRAMA attacks [139].

Cache Designs. To thwart cache attacks, various proposals for alterna-
tive or adapted cache designs exist. Wang and Lee [188] proposed PLcache,
which allows to lock cache lines in the cache temporarily. This ensures
that an attacker cannot evict the cache lines in a cache attack. Certain
ARM cache controllers support such a cache lockdown by cache way and
cache line [20].

Tan et al. [168] suggested such a locking mechanism for the BTB to
defend against branch-prediction attacks.

RPcache [188] and NewCache [187] use a random per-process mapping
from addresses to cache sets. With this design, an attacker cannot con-
struct an eviction set for a target cache set. Liu and Lee [117] proposed
random fill caches, where data on a cache miss is sent directly to the
processor and not cached. Instead, they cache a random address in the
neighborhood of the data.

The time-secure cache [172] uses a cache-set-indexing function based on
the process ID. However, we have shown that the used indexing function
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is weak [193]. We generalized the concept of the time-secure cache and
used a stronger indexing function [193]. CEASER [141] relies on a similar
principle. However, due to its design, the inter-process cache interference
is predictable for an attacker.

Saileshwar et al. [145] proposed to add a “zombie bit” to every cache
line on an explicit flush. Cache hits to zombie lines suffer an additional
delay making them indistinguishable from cache misses, consequently
thwarting Flush+Reload attacks.

Instruction Set Extensions. While constant-time cryptographic al-
gorithms can be implemented in software, most processors provide a
constant-time instruction-set extension for computing at least AES [14,
22, 23, 72]. The hardware AES implementation is not only faster but also
resistant against software-based side-channel attacks.

Strackx et al. [165] proposed small changes to the SGX instruction-set
extension to protect against page-table side-channel attacks.

Intel and AMD extended the instruction set with functionality to have
more control over branch prediction [15, 17, 88]. With these extensions,
the branch prediction for indirect branches can be limited to privilege
levels and hyperthreads [37], and the speculative store bypass can be
disabled. ARM introduced speculative barriers as well as control registers
to restrict speculation in ARMv8.5 [21].

Safe Transient Execution. As Meltdown attacks are vulnerabilities
in the CPU, they ultimately require fixes in hardware. While this of-
ten requires a new hardware revision, some Meltdown attacks can be
fixed by changing the hardware behavior through microcode updates [37].
Meltdown-GP [24, 82] on Intel CPUs has been fixed using a microcode
update [82]. For Meltdown-P [176, 192], Meltdown-MCA [146, 158] (also
known as ZombieLoad or RIDL), and Meltdown-STL [126] (also known
as Fallout), Intel released microcode updates which expose new flushing
functionalities for the L1, store buffer, line-fill buffer, and the load ports.

For Spectre attacks, this is more difficult, as their root cause is intended
and cannot directly be fixed. Most countermeasures try to mitigate Spectre
by preventing extraction of the leaked data through the cache [98, 102,
199]. However, the cache is not the only covert channel which can be
used to extract data [29, 105, 155]. Hence, these countermeasures are
incomplete [37].

We proposed a different approach using taint tracking of secrets [105,
149]. By annotating and tracking secrets, our approach ensures that
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secrets can never be used in transient execution, thus preventing any
leakage of secret data. A similar approach was also proposed by Yu et al.
[203].





4
Conclusion

In this thesis, we researched the requirements for software-based microar-
chitectural attacks, showing that several wrong assumptions about their
requirements existed. From our results, we can conclude several things.

Few Requirements. Mounting software-based microarchitectural at-
tacks does not require many primitives. For many attacks it is sufficient
to have read access to the memory, compute on these values, and measure
time. While it is hardly possible to restrict memory access and general-
purpose computation, it is even difficult to prevent timing measurement.
We showed that the lack of a timer can be overcome as long as shared
resources and concurrent execution is possible in a language [116, 150,
151, 154].

Based on these results, we showed software-based microarchitectural
attacks in environments which were assumed to be too restricted, such
as Intel SGX or JavaScript [150, 151, 154]. Moreover, we demonstrated
that the techniques learned from the past years of microarchitectural
side-channel attacks can also be applied to different abstraction layers,
such as the operating system [66], which makes the attacks even hardware-
agnostic.

Code Execution. Many countermeasures built upon the assumption
that attack code runs natively and can thus be inspected or detected.

45
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However, by moving attacks inside sandboxes [150, 151, 154] this is
only partly true. Moreover, we were the first to show a fully remote
Spectre attack [155], and a remote Rowhammer attack [115] also shown
in concurrent work [170].

These results show a trend to move attacks from native code to more
restricted environments and even allow attackers to mount attacks remotely.
While the performance of these attacks can still be improved significantly,
it shows that current threat models might not be complete.

New Side Channels. During this thesis, we discovered several novel
side channels [139, 151, 153, 155, 157]. From that, we can conclude that
there are still many undiscovered side channels in modern CPUs. Moreover,
we will see more sophisticated side channels in the future which combine
multiple effects, as we have shown with Store-to-leak forwarding [157].

We have seen that performance optimizations often introduce new
side channels. Hence, we assume that as CPUs are mainly optimized for
performance and not for security, there will be more side channels in the
future.

Hardware Vulnerabilities. With transient-execution attacks [37, 105,
114], we have shown that side-channel attacks are even more powerful
than assumed. Side-channel attacks are a vital part of transient-execution
attacks to leak secrets from the transient to the architectural domain.
Hence, side-channel attacks are a tool to look into the microarchitectural
state of the CPU.

In addition to the hardware vulnerabilities we have already discovered
using side-channel attacks [37, 105, 114, 126, 157, 158], we can expect to
see more hardware vulnerabilities which can be exploited. Especially as
transient-execution attacks have so far mainly exploited the low-hanging
fruit, we can expect even more sophisticated transient-execution attacks.

Effective Defenses. To build effective defenses against attacks, it is
extremely important to first understand the attack surface and require-
ments. Only then, it is possible to build defenses which mitigate entire
classes of attacks [65, 148, 149, 152], or fully prevent leakage of specific
data [153]. We have shown that otherwise, defenses can be bypassed by
adapting attacks [62, 116, 150]. Hence, it is necessary to further research
attacks to be able to build complete defenses.

We assume that many defenses cannot simply be retrofitted to the
existing architectures and software infrastructure [149, 153]. Instead,
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cooperation between hardware and software will be required to ensure
efficient and effective defenses. While we see this as a promising direction,
it requires changes in all layers, i.e., in hardware, operating systems, and
toolchains. Thus, we have to move from CPUs designed as black boxes that
run any software to hardware-software co-design [149]. Side-channel-aware
CPU designs potentially reduce the difficulty of writing side-channel-
resistant applications. In general, it is not realistic to eliminate all side
channels in all scenarios [105]. However, tighter integration of software
and hardware gives the hardware the possibility to reduce information
leakage for sensitive data while still providing performance optimizations
for other data [149, 152]. This might also require developers to potentially
provide metadata for data [105, 149, 203]. With additional metadata,
the CPU can then selectively disable specific optimizations when working
with sensitive data [149]. However, this does not only require changes to
software and hardware, there also needs to be an awareness of side-channel
leakage among software developers, which might take more time.



48 Chapter 4. Conclusion

References
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[49] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
“Cacheaudit: A tool for the static analysis of cache side channels.”
In: TISSEC (2015).

[50] ECLYPSIUM. System Management Mode Speculative Execution
Attacks. May 2018. url: https://blog.eclypsium.com/2018/05/
17/system-management-mode-speculative-execution-attacks/.

[51] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry
Ponomarev, et al. “Branchscope: A new side-channel attack on
directional branch predictor.” In: ACM SIGPLAN Notices. 2018.

[52] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Covert channels through branch predictors: a feasibility study.” In:
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy. ACM. 2015.

[53] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking branch predictors to bypass ASLR.”
In: MICRO. 2016.

[54] Bryan Ford, Minlan Yu, Abhishek Sharma, Ramesh Govindan,
Chandra Krintz, and Haitao Wu. “Plugging side-channel leaks with
timing information flow control.” In: HotCloud. 2012.

[55] Cesar Pereida Garćıa and Billy Bob Brumley. “Constant-time
callees with variable-time callers.” In: USENIX Security. 2017.

[56] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. “A survey
of microarchitectural timing attacks and countermeasures on con-
temporary hardware.” In: Journal of Cryptographic Engineering
8.1 (2018).

[57] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom.
“Drive-by key-extraction cache attacks from portable code.” In:
International Conference on Applied Cryptography and Network
Security. 2018.

[58] Michael Godfrey and Mohammad Zulkernine. “A server-side solu-
tion to cache-based side-channel attacks in the cloud.” In: IEEE
CLOUD. 2013.
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practice of finding eviction sets.” In: S&P. 2019.

[182] W3C. High Resolution Time Level 2 - W3C Working Draft 21 July
2015. July 2015. url: http://www.w3.org/TR/2015/WD-hr-time-2-
20150721/#privacy-security.

[183] W3Techs. Usage of JavaScript for websites. Aug. 2017. url: https:
//w3techs.com/technologies/details/cp-javascript/all/all.

[184] Daimeng Wang, Zhiyun Qian, Nael B Abu-Ghazaleh, and Srikanth
V Krishnamurthy. “PAPP: Prefetcher-Aware Prime and Probe
Side-channel Attack.” In: DAC. 2019.

[185] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B Abu-
Ghazaleh, Srikanth V Krishnamurthy, Edward JM Colbert, and
Paul Yu. “Unveiling your keystrokes: A Cache-based Side-channel
Attack on Graphics Libraries.” In: NDSS. 2019.

[186] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. “Timing chan-
nel protection for a shared memory controller.” In: High Perfor-
mance Computer Architecture. 2014.

[187] Zhenghong Wang and Ruby B. Lee. “A Novel Cache Architecture
with Enhanced Performance and Security.” In: MICRO. 2008.

[188] Zhenghong Wang and Ruby B. Lee. “New cache designs for thwart-
ing software cache-based side channel attacks.” In: ACM SIGARCH
Computer Architecture News 35.2 (June 2007), p. 494.

http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
http://www.w3.org/TR/2015/WD-hr-time-2-20150721/#privacy-security
https://w3techs.com/technologies/details/cp-javascript/all/all
https://w3techs.com/technologies/details/cp-javascript/all/all


64 Chapter 4. Conclusion

[189] Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller,
Stefan Mangard, and Georg Sigl. “DATA–Differential Address
Trace Analysis: Finding Address-based Side-Channels in Binaries.”
In: USENIX Security. 2018.

[190] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
“SGXJail: Defeating Enclave Malware via Confinement.” In: RAID.
2019.

[191] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single trace
attack against RSA key generation in Intel SGX SSL.” In: AsiaCCS.
2018.

[192] Weisse, Ofir and Van Bulck, Jo and Minkin, Marina and Genkin,
Daniel and Kasikci, Baris and Piessens, Frank and Silberstein,
Mark and Strackx, Raoul and Wenisch, Thomas F. and Yarom,
Yuval. Foreshadow-NG: Breaking the Virtual Memory Abstraction
with Transient Out-of-Order Execution. 2018.

[193] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. “SCATTERCACHE:
Thwarting Cache Attacks via Cache Set Randomization.” In:
USENIX Security. 2019.

[194] John C Wray. “An analysis of covert timing channels.” In: Journal
of Computer Security 1.3-4 (1992), pp. 219–232.

[195] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang.
“Eliminating timing side-channel leaks using program repair.” In:
ACM SIGSOFT International Symposium on Software Testing and
Analysis. 2018.

[196] Weiyi Wu, Ennan Zhai, David Isaac Wolinsky, Bryan Ford, Liang
Gu, and Daniel Jackowitz. “Warding off timing attacks in Deter-
land.” In: Conference on Timely Results in Operating Systems.
2015.

[197] Zhenyu Wu, Zhang Xu, and Haining Wang. “Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside
the Cloud.” In: IEEE/ACM Transactions on Networking (2014).

[198] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi,
Matti Hiltunen, and Richard Schlichting. “An exploration of L2
cache covert channels in virtualized environments.” In: CCSW.
2011.



References 65

[199] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. “InvisiSpec: Mak-
ing Speculative Execution Invisible in the Cache Hierarchy.” In:
MICRO. 2018.

[200] Yuval Yarom and Naomi Benger. “Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.”
In: IACR Cryptology ePrint Archive (2014).

[201] Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack.” In: USENIX
Security. 2014.

[202] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot
Heiser. “Mapping the Intel Last-Level Cache.” In: Cryptology ePrint
Archive, Report 2015/905 (2015), pp. 1–12.

[203] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W. Fletcher. “Speculative Taint Track-
ing (STT): A Comprehensive Protection for Transiently Accessed
Secrets.” In: MICRO. 2019.

[204] Andreas Zankl, Johann Heyszl, and Georg Sigl. “Automated detec-
tion of instruction cache leaks in modular exponentiation software.”
In: International Conference on Smart Card Research and Advanced
Applications. 2016.

[205] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. “Predictive
mitigation of timing channels in interactive systems.” In: CCS.
2011.

[206] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. “CloudRadar:
A Real-Time Side-Channel Attack Detection System in Clouds.”
In: RAID. 2016.

[207] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. “Memory
DoS attacks in multi-tenant clouds: Severity and mitigation.” In:
arXiv:1603.03404 (2016).

[208] Yinqian Zhang and MK Reiter. “Düppel: retrofitting commodity
operating systems to mitigate cache side channels in the cloud.”
In: CCS. 2013.

[209] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. “Cross-VM side channels and their use to extract private
keys.” In: CCS. 2012.



66 Chapter 4. Conclusion

[210] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter.
“HomeAlone: Co-residency Detection in the Cloud via Side-Channel
Analysis.” In: S&P. 2011.

[211] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. “A software
approach to defeating side channels in last-level caches.” In: CCS.
2016.



References 67

Part II
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download the full thesis.
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