
Meltdown: Reading Kernel Memory from User Space
Moritz Lipp

1
, Michael Schwarz

1
, Daniel Gruss

1
, Thomas Prescher

2
, Werner Haas

2
, Jann Horn

3
,

Stefan Mangard
1
, Paul Kocher

4
, Daniel Genkin

5
, Yuval Yarom

6
, Mike Hamburg

7
, Raoul Strackx

8

1
Graz University of Technology,

2
Cyberus Technology GmbH,

3
Google Project Zero,

4
Independent (www.paulkocher.com),

5
University of Michigan,

6
University of Adelaide & Data61,

7
Rambus, Cryptography Research Division,

8
imec-DistriNet, KU Leuven

1 Introduction
Memory isolation is a cornerstone security feature in the construc-

tion of every modern computer system. Allowing the simultaneous

execution of multiple mutually-distrusting applications at the same

time on the same hardware, it is the basis of enabling secure execu-

tion of multiple processes on the same machine or in the cloud. The

operating system is in charge of enforcing this isolation, as well as

isolating its own kernel memory regions from other users.

Given its central role, on modern processors, the isolation be-

tween the kernel and user processes is backed by the hardware, in

the form of a supervisor bit that determines whether code in the

current context can access memory pages of the kernel. The basic

idea is that this bit is set only when entering kernel code and it is

cleared when switching to user processes. This hardware feature

allows operating systems to map the kernel into the address space

of every process, thus supporting very efficient transitions from

the user process to the kernel (e.g., for interrupt handling) while

maintaining the security of the kernel memory space.

In this work we present Meltdown, a novel attack that exploits a

vulnerability in the way the processor enforces memory isolation.

Root Cause. At a high level, the root cause of Meltdown’s simplic-

ity and strength are side effects caused by out-of-order execution,
which is an important performance feature of modern processors

designed to overcome latencies of busy execution units (e.g., a mem-

ory fetch unit waiting for data arrival from memory). Rather than

stalling the execution, modern processors run operations out-of-
order, i.e., they look ahead and schedule subsequent operations on

available execution units of the core.

While this feature is beneficial for performance, from a security

perspective, one observation is particularly significant. Some CPUs

allow an unprivileged process to load data from a privileged (kernel

or physical) address into a temporary register, delaying exception

handling to later stages. The CPU even allows performing further

computations based on this register value, such as using it as an

index to an array access. When the CPU finally realizes the error, it

reverts the results of this incorrect transient execution, discarding

any modifications to the program state (e.g., registers). However, we

observe that out-of-order memory lookups influence the internal

state of the processor, which in turn can be detected by the program.

As a result, an attacker can dump the entire kernel memory by

reading privileged memory in an out-of-order execution stream,

and subsequently transmitting the data via a covert channel, e.g.,

by modulating the state of the cache. As the CPU’s internal state

is not fully reverted, the receiving end of the covert channel can

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Arch. Description

x86 Most Intel and VIA processors are vulnerable. AMD

processors are not.

Arm Cortex-A75 and SoCs based on it are vulnerable. Some

proprietary Arm-based processors, including some

Apple and Samsung cores, are also vulnerable. Arm

Cortex-A72, Cortex-A57 and Cortex-A15 are vulnera-

ble to a Variant 3a of Meltdown. Other Arm cores are

not known to be vulnerable.

Power All IBM Power architecture processors are vulnerable.

z/Arch. IBM z10, z13, z14, z196, zEC12 are vulnerable.

SPARC V9-based SPARC systems are not vulnerable. Older

SPARC processors may be impacted.

Itanium Itanium processors are not vulnerable.

Table 1: Summary of processors affected by Meltdown.

later recover the transmitted value, e.g., by probing the state of the

cache.

Threat Model. To mount Meltdown, the adversary needs the abil-

ity to execute code on a vulnerable machine. Executing code can

be achieved through various means, including hosting in cloud

services, apps in mobile phones, and JavaScript code in web sites.

Vulnerable machines include personal computers and servers fea-

turing a large range of processors (see Table 1). Furthermore, while

countermeasures have been introduced to both operating systems

and browsers, these only became available after the disclosure of

Meltdown.

Impact. Three properties of Meltdown combine to have a devas-

tating effect on the security of affected systems. First, exploiting a

hardware vulnerability means that the attack does not depend on

specific vulnerabilities in the software. Thus, the attack is generic

and, at the time of discovery, affected all existing versions of all

major operating systems. Second, because the attack only depends

on the hardware, traditional software-based protections, such as

cryptography, operating system authorization mechanisms, or an-

tivirus software, are powerless to stop the attack. Last, because the

vulnerability is in the hardware, fixing the vulnerability requires

replacing the hardware. While software-based countermeasures

for Meltdown have been developed, these basically avoid using the

vulnerable hardware feature, incurring a significant performance

hit.

Evaluation. We evaluate the attack on modern desktop machines

and laptops, as well as servers and clouds. Meltdown is effective

against all major operating systems (including Linux, Android, OS

X and Windows), allowing an unprivileged attacker to dump large

https://doi.org/10.1145/nnnnnnn.nnnnnnn

parts of the physical memory. As the physical memory is shared

among all other tenants running on the same hardware, this may

include the physical memory of other processes, the kernel, and

in the case of paravirtualization, the memory of the hypervisor

or other co-located instances. While the performance heavily de-

pends on the specific machine, e.g., processor speed, TLB and cache

sizes, and DRAM speed, we can dump arbitrary kernel and physical

memory at a speed of 3.2 KiB/s to 503 KiB/s.

Countermeasures.While not originally intended to be a counter-

measure for Meltdown, KAISER [3], developed initially to prevent

side-channel attacks targeting KASLR, also protects against Melt-

down. Our evaluation shows that KAISER prevents Meltdown to

a large extent. Consequently, we stress that it is of utmost im-

portance to deploy KAISER on all operating systems immediately.

Fortunately, during the responsible disclosure window, the three

major operating systems (Windows, Linux, and OS X) implemented

variants of KAISER and recently rolled out these patches.

Spectre Attacks and FollowupWorks.Meltdownwas published

simultaneously with the Spectre Attack [14], which exploits a dif-

ferent CPU performance feature, called speculative execution, to
leak confidential information. Meltdown is distinct from Spectre in

several ways, notably that Spectre requires tailoring to the victim

process’s software environment, but applies more broadly to CPUs

and is not mitigated by KAISER. Since the publication of Meltdown

and Spectre, several prominent follow-up works exploited out-of-

order and speculative execution mechanisms to leak information

across other security domains [11, 13, 15, 18, 20–22]. While some

of these attacks have been mitigated, additional work is required

to mitigate others.

2 Background
In this section, we provide background on out-of-order execution,

address translation, and cache attacks.

2.1 The Microarchitecture
The Instruction Set Architecture (ISA) of a processor is the interface

it provides to the software it executes. The ISA is typically defined

as some state, which mostly consists of the contents of the archi-

tectural registers and the memory, and a set of instructions that

operate on this state. The implementation of this interface consists

of multiple components, collectively called the microarchitecture.
The microarchitecture maintains a state which extends the archi-

tectural state of the processor as defined by the ISA, adding further

information required for the operation of the microarchitectural

components. While changes in the microarchitectural state do not

affect the logical behavior of the program, they may affect its perfor-

mance. Thus, the microarchitectural state of the processor depends

on prior software execution and affects its future behavior, creating

the potential for untraditional communication channels [2].

2.2 Out-of-order execution
Out-of-order execution [7] is an optimization technique that in-

creases the utilization of the execution units of a CPU core. Instead

of processing instructions strictly in sequential program order, wait-

ing for slow instructions to complete before executing subsequent

Physical memory

0 max

User

0 247

Kernel

−247 −1

Figure 1: On Unix-like 64-bit systems, a physical address
(blue) which is mapped accessible to the user space is also
mapped in the kernel space through the direct mapping.

instructions, the CPU executes them as soon as all required re-

sources are available. While the execution unit of the current op-

eration is occupied, other execution units can run ahead. Hence,

instructions execute in parallel as long as their results follow the

architectural definition.

2.3 Address Spaces
To isolate processes from each other, CPUs support virtual address

spaces where virtual addresses are translated to physical addresses.

The operating system kernel plays a key role in managing the

address translation for processes. Consequently, the memory of the

kernel need also be protected from user processes. Traditionally,

in segmented architectures [7], the kernel had its own segments

which were not accessible to user processes.

In modern processors, a virtual address space is divided into

a set of pages that can be individually mapped to physical mem-

ory through a multi-level page translation table. In addition to the

virtual to physical mapping, the translation tables also specify pro-

tection properties that specify the allowed access to the mapped

pages. These properties determine, for example, whether pages

are readable, writable, and executable. A pointer to the currently

used translation table is held in a dedicated CPU register. During a

context switch, the operating system updates this register to point

to the translation table of the next process, thereby implementing

a per-process virtual address space, allowing each process to only

reference data that belongs to its virtual address space. To reduce

the cost of consulting the translation tables, the processor caches

recent translation results in the Translation Lookaside Buffer (TLB).

While the TLB reduces the cost of address translation, its con-

tents needs to be flushed when changing address space. To avoid

the cost of flushing the TLB on every switch between the user pro-

gram and the kernel, modern systems include the kernel memory

within the address space of every process. Following an idea first

introduced in the VAX/VMS system, the page table also includes a

protection bit that indicates whether the page belongs to the kernel

or to the user program. Kernel pages are only accessible when the

processor executes with high privileges, i.e., when executing the

kernel. Thus, user processes are not able to read or to modify the

contents of the kernel memory.

To aid in memorymanagement, manymodern operating systems

directly map (a part of) the physical memory in the kernel’s part

of the virtual address space at a fixed locationm (c.f. Figure 1). A

physical address p can than be assessed through virtual address

p +m.

2.4 Cache Attacks
To speed-up memory accesses and address translation, the CPU

contains small memory buffers, called caches, that store frequently

used data. CPU caches hide slow memory accesses by buffering

frequently used data in smaller and faster internal memory. Modern

CPUs have multiple levels of caches that are either private per core

or shared among them. Address space translation tables are also

stored in memory and, thus, also cached in the regular caches.

Cache side-channel attacks exploit the timing differences that

the caches introduce. Several cache attack techniques have been

proposed and demonstrated in the past, including Prime+Probe [16]

and Flush+Reload [23]. Flush+Reload attacks work on a single

cache line granularity. These attacks exploit the shared, inclusive

last-level cache. An attacker frequently flushes a targeted memory

location using the clflush instruction. By measuring the time

it takes to reload the data, the attacker determines whether the

memory locationwas loaded into the cache by another process since

the last clflush. The Flush+Reload attack has been used for attacks
on various computations, e.g., cryptographic algorithms [23], web

server function calls [24], user input [6], and kernel addressing

information [4].

A special use case of a side-channel attack is a covert channel.

Here the attacker controls both the part that induces the side ef-

fect, and the part that measures the side effect. This can be used

to leak information from one security domain to another while

bypassing any boundaries existing on the architectural level or

above. Both Prime+Probe and Flush+Reload have been used in

high-performance covert channels [5].

3 A Toy Example
In this section, we start with a toy example, which illustrates that

out-of-order execution can change the microarchitectural state in a

way that leaks information.

<instr.>
<instr.>

...
<instr.>
[Exception]

E
X

E
C

U
T

E
D

E
X

E
C

U
T

E
D

O
U

T
O

F
O

R
D

E
R<instr.>

<instr.>
<instr.>

EXCEPTION
HANDLER

<instr.>
<instr.>
[Terminate]

Figure 2: If an executed instruction causes an exception, con-
trol flow is diverted to an exception handler. Subsequent in-
struction may already have been partially executed, but not
retired. Architectural effects of this transient execution are
discarded.

Triggering Out-of-Order Execution. Figure 2 shows a simple

code sequence first raising an (unhandled) exception and then ac-

cessing an array. The exception can be raised through any mean,

such as accessing an invalid memory address, performing a privi-

leged instruction in user code, or even division by zero. An impor-

tant property of an exception, irrespective of its cause, is that the

control flow does not follow program order to the code following

the exception. Instead, it jumps to an exception handler in the oper-

ating system kernel. Thus, the code in our toy example is expected

not to access the array because the exception traps to the kernel

and terminates the application before the access is performed. How-

ever, we note that the access instruction after the exception has

no data dependency on the trapping instruction. Hence, due to

out-of-order execution, the CPU might execute the access before

triggering the exception. When the exception is triggered, instruc-

tions executed out of order are not retired and, thus, never have

architectural effects. However, instructions executed out-of-order

do have side-effects on the microarchitecture. In particular, the

contents of the memory accessed after the exception in Figure 2

are fetched into a register and also stored in the cache. When the

out-of-order execution is reverted (i.e., the register and memory

contents are never committed), the cached memory contents sur-

vive reversion and remain in the cache for some time. We can now

leverage a microarchitectural side-channel attack, such as Flush+

Reload [23], to detect whether a specific memory location is cached,

thereby making the affected microarchitectural state visible.

Observing Out-of-Order Execution. The code in Figure 2 ac-

cesses a memory address that depends on the value of data. As
data is multiplied by 4096, data accesses to array are scattered

over the array with a distance of 4 KiB (assuming a 1 B data type

for array). Thus, there is an injective mapping from the value of

data to a memory page, i.e., different values for data never result in
accesses to the same page. Consequently, if a cache line of a page

is cached, we can determine the value of data.

0 50 100 150 200 250
200
300
400
500

Page

A
cc

es
s

tim
e

[c
yc

le
s]

Figure 3: Even if a memory location is only accessed during
out-of-order execution, it remains cached. Iterating over the
256 pages of array shows one cache hit, exactly on the page
that was accessed during the out-of-order execution.

Figure 3 shows the result of Flush+Reload measurements iterat-

ing over all of the pages of array, after executing the out-of-order

snippet in Figure 2 with data = 84. Although the array access

should not have happened due to the exception, we can clearly see

that the index which would have been accessed is cached. Iterating

over all pages (e.g., in the exception handler) shows a cache hit for

page 84 only. This demonstrates that instructions which are only

executed out-of-order but are never retired, change the microar-

chitectural state of the CPU. In Section 4 we show how we modify

this toy example to leak an inaccessible secret.

4 Building Blocks of the Attack
The toy example in Section 3 illustrates that side effects of out-of-

order execution can modify the microarchitectural state to leak

information. While the code snippet reveals the data value passed

to a cache side channel, we want to show how this technique can

be leveraged to leak otherwise inaccessible secrets. In this section,

we want to generalize and discuss the necessary building blocks to

exploit out-of-order execution for an attack.

Exception Handling/
Suppression

Transient
Instructions

Secret

Microarchitectural

State Change

Section 4.1

Architectural
State

Transfer (Covert Channel)

Recovered
Secret

Recovery

L
eaked

Accessed

Section 4.2

Figure 4: The Meltdown attack uses exception handling or
suppression, e.g., TSX, to run a series of transient instruc-
tions. These transient instructions obtain a (persistent) se-
cret value and change the microarchitectural state of the
processor based on this secret value. This forms the send-
ing part of a microarchitectural covert channel. The receiv-
ing side reads the microarchitectural state, lifts it to archi-
tectural, and recovers the secret value.

Overview Of Meltdown. Assume an adversary that targets a se-

cret value which is kept somewhere in physical memory. The full

Meltdown attack leaks this value using two building blocks, as illus-

trated in Figure 4. The first building block of Meltdown (Section 4.1)

is to make the CPU execute one or more transient instructions, i.e.,
instructions that do not occur during regular execution. The second

building block of Meltdown is to transfer the microarchitectural

side effect of the transient instruction sequence to an architectural

state to further process the leaked secret. Thus, Section 4.2 describes

methods to lift a microarchitectural side effect to an architectural

state using covert channels.

4.1 Executing Transient Instructions
The first building block of Meltdown is the execution of transient

instructions, which are executed out-of-order and leave measurable

side effects. We focus on transient instructions that follow an illegal

access to addresses that are mapped within the attacker’s process

such as user-inaccessible kernel space addresses. In general, access-

ing such user-inaccessible addresses triggers an exception, which

typically terminates the application. Because we want to measure

the microarchitectural state of the processor after the transient exe-

cution, we want to avoid terminating the process. We now present

several approaches the attacker can use to cope with the exception.

Fork-and-Crash. A trivial approach is to fork the attacking appli-

cation before accessing the invalid memory location that terminates

the process and only access the invalid memory location in the child

process. The CPU executes the transient instruction sequence in the

child process before crashing. The parent process can then recover

the secret by probing the microarchitectural state.

Exception Handling. Next, it is also possible to install a signal

handler that is executed when a certain exception occurs, e.g., a

segmentation violation. This allows the attacker to issue the instruc-

tion sequence and prevent the application from crashing, reducing

the overhead as no new process has to be created.

Exception Suppression via TSX.An alternative approach to deal
with exceptions is to prevent them from being raised in the first

place. Intel Transactional Synchronization Extensions (TSX) defines

the concept of transaction, which is a sequence of instructions that

execute atomically, i.e., either all of the instructions in a transac-

tion are executed, or none of them is. If an instruction within the

transaction fails, already executed instructions are reverted, but no

exception is raised. By wrapping the code of Listing 1 in such a TSX

transaction, the exception is suppressed. Yet, the microarchitectural

effects of transient execution are still visible. Because suppressing

the exception is significantly faster than trapping into the kernel

for handling the exception, and continuing afterwards, this results

in a higher channel capacity.

Exception Suppression via Branch Predictor. Finally, specu-
lative execution issues instructions that might not occur in the

program order due to a branch misprediction. Thus by forcing a

misprediction that speculatively executes the invalid memory ac-

cess, we can achieve transient execution of both the invalid memory

access and the instructions following it, without triggering an ex-

ception. See Kocher et al. [14] for further details on speculative

execution and transient instructions.

4.2 Building a Covert Channel
The second building block of Meltdown is lifting the microarchi-

tectural state, which was changed by the transient instruction se-

quence, into an architectural state (cf. Figure 4). The transient in-

struction sequence can be seen as the transmitting end of a microar-

chitectural covert channel. The receiving end of the covert channel

receives the microarchitectural state change and deduces the secret

from the state. Note that the receiver is not part of the transient

instruction sequence and can be a different thread or process e.g.,

the parent process in the fork-and-crash approach.

ACache-Based Covert Channel. Previous works [5, 16, 23] have
demonstrated that the microarchitectural state of the cache can

be easily lifted into a architectural state. We, therefore, employ

these techniques for our covert channel. Specifically, we use Flush+

Reload [23], as it allows building a fast and low-noise covert chan-

nel.

After accessing a user-inaccessible secret value, the transient

instruction sequence executes the cache covert channel transmitter,

performing a memory access using the secret value as part of the

address. As explained earlier, this address remains cached for subse-

quent accesses, and survives the soon-to-be-raised exception. Thus,

part of the cache state depends on the secret value, and lifting this

state to an architectural state leaks the secret value.

Recovering the Leaked Value. The covert channel receiver can
then monitor whether an address has been loaded into the cache

by measuring the access time to the address. For example, the

sender can transmit a ‘1’-bit by accessing an address which is loaded

into the monitored cache, and a ‘0’-bit by not accessing such an

address. Using multiple different cache lines, as in our toy example

1 mov al, byte [rcx] ; rcx = kernel address
2 shl rax, 0xc
3 mov rbx, qword [rbx + rax] ; rbx = probe array

Listing 1: The core of Meltdown. An inaccessible kernel
address is moved to a register, raising an exception.
Subsequent instructions are executed out of order before the
exception is raised, leaking the data from the kernel address
through the indirect memory access.

in Section 3, allows transmitting multiple bits at once. For every one

of the 256 different byte values, the sender accesses a different cache

line. By performing a Flush+Reload attack on all of the 256 possible

cache lines, the receiver can recover a full byte rather than just one

bit of secret value. However, since the Flush+Reload attack takes

much longer (typically several hundred cycles) than the transient

instruction sequence, transmitting only a single bit at once is more

efficient. The attacker can choose the bit to transmit by shifting

and masking the secret value accordingly.

Using Other Covert Channels. Note that the covert channel part
is not limited to cache-based microarchitectural channels. Any in-

struction (or sequence) that influences the microarchitectural state

of the CPU in a way that can be observed from a user process can

be used to build a covert channel transmitter. For example, to send

a ‘1’-bit the sender could issue an instruction (or sequence) which

occupies a certain execution port such as the ALU. The receiver

measures the latency when executing an instruction (sequence) on

the same execution port. A high latency implies that the sender

sends a ‘1’-bit, whereas a low latency implies that the sender sends

a ‘0’-bit. The advantage of the Flush+Reload cache covert channel

is the noise resistance and the high transmission rate [5]. Further-

more, with cache architectures commonly used in current CPUs,

different memory access latencies can be observed from any CPU

core [23], i.e., rescheduling events do not significantly affect the

covert channel.

5 The Meltdown Attack
In this section, we present Meltdown, a powerful attack enabling

arbitrary kernel memory (typically including the entire physical

memory) to be read from an unprivileged user program, comprised

of the building blocks presented in Section 4. First, we discuss the

attack setting to emphasize the wide applicability of this attack.

Second, we present an attack overview, showing howMeltdown can

be mounted on both Windows and Linux on personal computers,

on Android on mobile phones as well as in the cloud. Finally, we

discuss a concrete implementation of Meltdown allowing to dump

memory with 3.2 KiB/s to 503 KiB/s.

Attack Setting. In our attack, we consider personal computers and

virtual machines in the cloud. In the attack scenario, the attacker

can execute arbitrary unprivileged code on the attacked system,

i.e., the attacker can run any code with the privileges of a normal

user. The attacker targets secret user data, e.g., passwords and

private keys, or any other valuable information. Finally, we assume

a completely bug-free operating system. That is, we assume that

the attacker does not exploit any software vulnerability to gain

kernel privileges or to leak information.

Attack Description. Meltdown combines the two building blocks

discussed in Section 4. At a high level, Meltdown consists of 3 steps:

• Step 1: Reading the Secret. The content of an attacker-

chosen memory location, which is inaccessible to the at-

tacker, is loaded into a register.

• Step 2: Transmit the Secret. A transient instruction ac-

cesses a cache line based on the secret content of the register.

• Step 3: Receive the Secret. The attacker uses Flush+Reload
to determine the accessed cache line and hence the secret

stored at the chosen memory location.

By repeating these steps for differentmemory locations, the attacker

can dump the kernel memory, including the entire physical memory.

Listing 1 shows a typical implementation of the transient instruc-

tion sequence and the sending part of the covert channel, using x86

assembly instructions. Note that this part of the attack could also

be implemented entirely in higher level languages such as C. In the

following, we discuss each step of Meltdown and the corresponding

code line in Listing 1.

5.1 Step 1: Reading the Secret.
Recall that modern operating systems map the kernel into the

virtual address space of every process. Consequently, a user process

can specify addresses that map to the kernel space. As discussed

in Section 2.3, in parallel with performing the access, the CPU

verifies that the process has the required permission for accessing

the address, raising an exception if the user tries to reference a

kernel address. However, when translating kernel addresses they

do lead to valid physical addresses, which the CPU can access,

and only the imminent exception due to illegal access protects the

contents of the kernel space. Meltdown exploits the out-of-order

execution feature of modern CPUs, which execute instructions for

a small time window between the illegal memory access and the

subsequent exception.

Line 1 of Listing 1 loads a byte value from the target kernel

address, pointed to by the RCX register, into the least significant

byte of the RAX register represented by AL. The CPU executes this by

fetching the MOV instruction, decoding and executing it, and sending
it to the reorder buffer for retirement. As part of the execution, a

temporary physical register is allocated for the updated value of

architectural register RAX. Trying to utilize the pipeline as much as

possible, subsequent instructions (Lines 2–3) are decoded and sent

to the reservation station holding the instructions while they wait

to be executed by the corresponding execution units.

Thus, when the kernel address is accessed in Line 1, it is likely

that the CPU already issues the subsequent instructions as part

of the out-of-order execution, and that these instruction wait in

the reservation station for the content of the kernel address to

arrive. When this contents arrives, the instructions can begin their

execution. Furthermore, processor interconnects [10] and cache

coherence protocols [19] guarantee that the most recent value of

a memory address is read, regardless of the storage location in a

multi-core or multi-CPU system.

When the processor finishes executing the instructions, they

retire in-order, and their results are committed to the architectural

state by updating the register renaming tables, i.e., the mapping

of architectural to physical registers [7]. During the retirement,

any interrupts and exceptions that occurred while executing of the

instruction are handled. Thus, when the MOV instruction that loads

the kernel address (Line 1) is retired, the exception is registered,

and the pipeline is flushed to eliminate all results of subsequent

instructions which were executed out of order. However, there is a

race condition between raising this exception and our attack Step 2

as described below.

5.2 Step 2: Transmitting the Secret

The instruction sequence from Step 1, which is executed out-of-

order, is chosen such that it becomes a transient instruction se-

quence. If this transient instruction sequence is executed before the

MOV instruction is retired, and the transient instruction sequence

performs computations based on the secret, it can transmit the

secret to the attacker.

As already discussed, we use cache attacks that allow building

fast and low-noise covert channels using the CPU’s cache. Thus,

the transient instruction sequence has to encode the secret as a mi-

croarchitectural cache state, similar to the toy example in Section 3.

We allocate a probe array in memory and ensure that no part of

this array is cached. To transmit the secret, the transient instruction

sequence performs an indirect memory access to an address which

depends on the secret (inaccessible) value. Line 2 of Listing 1, shifts

the secret value from Step 1 by 12 bits to the left, effectively multi-

plying it by the page size of 4 KiB. This ensures that accesses to the

array have a large spatial distance from each other, preventing the

hardware prefetcher from loading adjacent memory locations into

the cache. Here, we read a single byte at once. Hence, our probe

array is 256 × 4096 bytes long.

Line 3 adds the multiplied secret to the base address of the probe

array, forming the target address of the covert channel. It then

accesses this address, effectively bringing its content to the cache.

Consequently, our transient instruction sequence affects the cache

state based on the secret value that was read in Step 1.

Finally, since the transient instruction sequence in Step 2 races

against raising the exception, reducing the runtime of Step 2 can

significantly improve the performance of the attack. For instance,

taking care that the address translation for the probe array is cached

in the Translation Lookaside Buffer (TLB) increases the attack per-

formance on some systems.

5.3 Step 3: Receiving the Secret

In Step 3, the attacker recovers the secret value from Step 1 by im-

plementing the receiving end of a microarchitectural covert channel

that transfers the cache state (Step 2) back into an architectural

state. As discussed in Section 4.2, our implementation of Meltdown

relies on Flush+Reload for this purpose.

When the transient instruction sequence of Step 2 is executed,

exactly one cache line of the probe array is cached. The position of

the cached cache line within the probe array depends only on the

secret, read in Step 1. To recover the secret, the attacker iterates over

all 256 pages of the probe array and measures the access time to the

first cache line of each page. The number of the page containing

the cached cache line corresponds directly to the secret value.

5.4 Dumping Physical Memory
Repeating all three steps of Meltdown, an attacker can dump the

entire memory by iterating over all addresses. However, as the

memory access to the kernel address raises an exception that ter-

minates the program, we use one of the methods from Section 4.1

to handle or suppress the exception.

Furthermore, because most major operating systems also map

the entire physical memory into the kernel address space (cf. Sec-

tion 2.3) in every user process, Meltdown can also read the entire

physical memory of the target machine.

6 Evaluation
In this section, we evaluate Meltdown and the performance of

our proof-of-concept implementation.
1
Section 6.1 discusses the

information Meltdown can leak, and Section 6.2 evaluates the per-

formance of Meltdown, including countermeasures. Our results are

consistent across vulnerable laptops, desktop PCs, mobile phones,

and cloud systems.

6.1 Leakage and Environments
We evaluated Meltdown on various operating systems with and

without patches. On all unpatched operating systems, Meltdown

can successfully leak kernel memory. We detail the Linux, Windows

and Android evaluation here.

Linux. We successfully evaluated Meltdown on multiple versions

of the Linux kernel, from 2.6.32 to 4.13.0, without the patches in-

troducing the KAISER mechanism. On all of these Linux kernel

versions, the kernel is mapped into the address space of user pro-

cesses, but access is prevented by the permission settings for these

addresses. As Meltdown bypasses these permission settings, an

attacker can leak the complete kernel memory if the virtual address

of the kernel base is known. Since all major operating systems (even

32 bit as far as possible) also map the entire physical memory into

the kernel address space (cf. Section 2.3), all physical memory can

also be read.

Before kernel 4.12, kernel address space layout randomization

(KASLR) was not enabled by default [17]. Without KASLR, the en-

tire physical memory was directly mapped starting at at address

0xffff 8800 0000 0000. On such systems, an attacker can use Melt-

down to dump the entire physical memory, simply by reading from

virtual addresses starting at 0xffff 8800 0000 0000. When KASLR

is enabled, Meltdown can still find the kernel by searching through

the address space. An attacker can also de-randomize the direct

physical map by iterating through the virtual address space.

On newer systems KASLR is usually active by default. Due to the

large size and the linearity of the mapping the randomization of the

direct physical map is usually 7 bits or lower. Hence, the attacker

can test addresses in steps of 8 GB, resulting in a maximum of 128

memory locations to test. Starting from one discovered location,

the attacker can again dump the entire physical memory.

Windows. We successfully evaluated Meltdown on a recent Mi-

crosoft Windows 10 operating system, last updated just before

patches against Meltdown were rolled out. In line with the results

1
https://github.com/IAIK/meltdown

https://github.com/IAIK/meltdown

on Linux, Meltdown can leak arbitrary kernel memory on Win-

dows. This is not surprising, since Meltdown does not exploit any

software issues, but is caused by a hardware issue.

In contrast to Linux, Windows does not map the physical mem-

ory directly in the kernel’s virtual address space. Instead, a large

fraction of the physical memory is mapped in the paged pools, non-

paged pools, and the system cache. Windows does map the kernel

into the address space of every application. Thus, Meltdown can

read kernel memory which is mapped in the kernel address space,

i.e., any part of the kernel which is not swapped out, and any page

mapped in the paged and non-paged pool, and in the system cache.

Note that there are physical pages which are mapped in one

process but not in the (kernel) address space of another process.

These physical pages cannot be attacked using Meltdown. However,

most of the physical memory is accessible through Meltdown.

We could read the binary code of the Windows kernel using

Meltdown. To verify that the leaked data is indeed kernel mem-

ory, we first used the Windows kernel debugger to obtain kernel

addresses containing actual data. After leaking the data, we again

used the Windows kernel debugger to compare the leaked data

with the actual memory content, confirming that Meltdown can

successfully leak kernel memory.

Android.We successfully evaluatedMeltdown on a SamsungGalaxy

S7 mobile phone running LineageOS Android 14.1 with a Linux ker-

nel 3.18.14. The device is equipped with a Samsung Exynos 8 Octa

8890 SoC consisting of a ARM Cortex-A53 CPU with four cores as

well as an Exynos M1 “Mongoose” CPU with four cores [1]. While

we were not able to mount the attack on the Cortex-A53 CPU, we

successfully mounted Meltdown on Samsung’s custom cores. Using

exception suppression via branch misprediction as described in Sec-

tion 4.1, we successfully leaked a pre-defined string using the direct

physical map located at the virtual address 0xffff ffbf c000 0000.

Containers. We evaluated Meltdown in containers sharing a ker-

nel, including Docker, LXC, and OpenVZ and found that the attack

can be mounted without any restrictions. Running Meltdown inside

a container allows to leak information not only from the underlying

kernel but also from all other containers running on the same physi-

cal host. The commonality of most container solutions is that every

container uses the same kernel, i.e., the kernel is shared among all

containers. Thus, every container has a valid mapping of the entire

physical memory through the direct-physical map of the shared

kernel. Furthermore, Meltdown cannot be blocked in containers, as

it uses only memory accesses. Especially with Intel TSX, only un-

privileged instructions are executed without even trapping into the

kernel. Thus, the confidentiality guarantee of containers sharing a

kernel can be entirely broken using Meltdown. This is especially

critical for cheaper hosting providers where users are not separated

through fully virtualized machines, but only through containers.

We verified that our attack works in such a setup, by successfully

leaking memory contents from a container of a different user under

our control.

6.2 Meltdown Performance
To evaluate the performance of Meltdown, we leaked known values

from kernel memory. This allows us to not only determine how

fast an attacker can leak memory, but also the error rate, i.e., how

many byte errors to expect. The race condition in Meltdown has a

significant influence on the performance of the attack, however, the

race condition can always be won. If the targeted data resides close

to the core, e.g., in the L1 data cache, the race condition is wonwith a

high probability. In this scenario, we achieved average reading rates

of 552.4 KiB/s on average (σ = 10.2) with an error rate of 0.009 %

(σ = 0.014) using exception suppression on the Core i7-8700K

over 10 runs over 10 seconds. On the Core i7-6700K we achieved

on average 515.5 KiB/s (σ = 5.99) with an error rate of 0.003 %

on average (σ = 0.001) and 466.3 KiB/s on average (σ = 16.75)

with an error rate of 11.59 % on average (σ = 0.62) on the Xeon

E5-1630. However, with a slower version with an average reading

speed of 137 KiB/s, we were able to reduce the error rate to zero.

Furthermore, on the Intel Core i7-6700K if the data resides in the L3

data cache but not in the L1, the race condition can still be won often,

but the average reading rate decreases to 12.4 KiB/s with an error

rate as low as 0.02 % using exception suppression. However, if the

data is uncached, winning the race condition is more difficult and,

thus, we have observed average reading rates of less than 10 B/s on

most systems. Nevertheless, there are two optimizations to improve

the reading rate: First, by simultaneously letting other threads

prefetch the memory locations [4] of and around the target value

and access the target memory location (with exception suppression

or handling). This increases the probability that the spying thread

sees the secret data value in the right moment during the data

race. Second, by triggering the hardware prefetcher within our own

thread through speculative accesses to memory locations of and

around the target value before the actual Meltdown attack. With

these optimizations, we can improve the reading rate for uncached

data to 3.2 KiB/s on average.

For all of the tests, we used Flush+Reload as a covert channel

to leak the memory as described in Section 5, and Intel TSX to

suppress the exception. For brevity, we omit the results of evaluating

exception suppression using conditional branches. See Kocher et

al. [14] for further information.

6.3 Limitations on ARM and AMD
We verified that some of the processors listed as not affected (see

Table 1) are not vulnerable. Specifically, we experimented with

some AMD and Arm-based processors, and were unable to repro-

duce Meltdown on those. We nevertheless note that for both ARM

and AMD, the toy example as described in Section 3 works reli-

ably, indicating that out-of-order execution generally occurs and

instructions past illegal memory accesses are also performed.

6.4 Real-World Meltdown Exploit
To demonstrate the applicability of Meltdown, we show a possible

real-world exploit that allows an attacker to steal the secret key

used to store sensitive data. We look at VeraCrypt [9], a freeware

solution that allows users to protect sensitive data using file or hard

disk encryption. We note that VerCrypt is just an example, and

any software that keeps its key material in main memory can be

attacked in a similar manner.

Attack Scenario. In our scenario, the attacker gained access to

the encrypted container or the encrypted hard drive of the victim.

Without the secret key, the attacker is unable to decrypt the data,

which is therefore secure. However, as VeraCrypt keeps the secret

key in the main memory, relying on memory isolation to protect

the key from unauthorized access, an attacker can use Meltdown

to recover the key. A naive approach for that is to dump the en-

tire physical memory of the computer and search in it. However,

this approach is not practical. Instead, we show that the attacker

can recover the page mapping of the VeraCrypt process and, thus,

limit the amount of data to leak. For our experiments, we used

VeraCrypt 1.22.

Breaking KASLR. As KASLR is active on the attacked system,

the attacker first needs to de-randomize the kernel address space

layout to access internal kernel structures and arbitrary physical

addresses using the direct mapping. By locating a known value in-

side the kernel, e.g., the Linux banner, the randomization offset can

be computed as the difference between the found address and the

non-randomized base address. The Linux KASLR implementation

only has an entropy of 6 bits [12], hence there are only 64 possible

randomization offsets, making this approach practical.

Locating the VeraCrypt Process. Linux manages processes in a

linked list whose head is stored in the init_task structure. The

structure’s address is at a fixed offset that only depends on the

kernel build and does not change when packages are loaded. Each

entry in the task list points to the next element, allowing easy

traversal. Entries further include the process id of the task, its name

and the root of the multi-level page table, allowing the attacker to

identify the VeraCrypt process and to locate its page map.

Extracting the encryption key. The attacker can now traverse

the paging structures and read the memory used by the process

directly. VeraCrypt stores the DataAreaKey in a SecureBuffer in

the VolumeHeader of a Volume. If ASLR is not active, the attacker

can directly read the key from the offset where the key is located.

Otherwise, the attacker searches the memory for a suitable pointer

from which it can track the data structures to the stored key.

With the extracted key, the attacker can decrypt the container

image, giving full access to the stored sensitive data. This attack

does not only apply to VeraCrypt but to every software that keeps

its key material stored in main memory.

7 Countermeasures
Fundamentally, Meltdown is a security issue rooted in hardware.

Thus, to fully mitigate Meltdown, the hardware of modern CPUs

needs to be modified. Indeed, since the original publication of Melt-

down, Intel has released 9th generation i-cores, which contain

hardware mechanisms that mitigate Meltdown.

For older vulnerable hardware, lower performing software miti-

gations do exist. More specifically, Gruss et al. [3] proposed KAISER,

a kernel modification to not have the kernel mapped in the user

space.While this modificationwas intended to prevent side-channel

attacks breaking KASLR [4, 8, 12], it also prevents Meltdown, as it

ensures that there is no valid mapping to kernel space or physical

memory available in user space. Since the publication of Meltdown,

Kernel Page Table Isolation (which is an implementation of KAISER)

has been adopted by all major operating systems.

8 Conclusion
Meltdown fundamentally changes our perspective on the security of

hardware optimizations that change the state of microarchitectural

elements. Meltdown and Spectre teach us that functional correct-

ness is insufficient for security analysis and the microarchitecture

cannot be ignored. They further open a new field of research to

investigate the extent to which performance optimizations change

the microarchitectural state, how this state can be lifted into an

architectural state, and how such attacks can be prevented. With-

out requiring any software vulnerability and independent of the

operating system, Meltdown enables an adversary to read sensitive

data of other processes, containers, virtual machines, or the kernel.

KAISER is a reasonable short-term workaround to prevent large-

scale exploitation of Meltdown until hardware fixes are deployed.

Acknowledgments
Several authors of this paper found Meltdown independently, ulti-

mately leading to this collaboration. We want to thank everyone

who helped us in making this collaboration possible, especially Intel

who handled our responsible disclosure professionally, communi-

cated a clear timeline and connected all involved researchers. We

thank Mark Brand from Google Project Zero for contributing ideas

and Peter Cordes and HenryWong for valuable feedback. We would

like to thank our anonymous reviewers for their valuable feedback.

Furthermore, we would like to thank Intel, ARM, Qualcomm, and

Microsoft for feedback on an early draft.

Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz

were supported by the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement No 681402).

Daniel Genkin was supported by NSF awards #1514261 and

#1652259, financial assistance award 70NANB15H328 from the U.S.

Department of Commerce, National Institute of Standards and Tech-

nology, the 2017-2018 Rothschild Postdoctoral Fellowship, and the

Defense Advanced Research Project Agency (DARPA) under Con-

tract #FA8650-16-C-7622.

References
[1] Burgess, B. Samsung Exynos M1 Processor. In IEEE Hot Chips (2016).
[2] Ge, Q., Yarom, Y., Cock, D., and Heiser, G. A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware. JCEN 8, 1 (2018).
[3] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and Mangard, S.

KASLR is Dead: Long Live KASLR. In International Symposium on Engineering
Secure Software and Systems (2017), Springer, pp. 161–176.

[4] Gruss, D., Maurice, C., Fogh, A., Lipp, M., and Mangard, S. Prefetch Side-

Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS (2016).
[5] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+Flush: A Fast and

Stealthy Cache Attack. In DIMVA (2016).

[6] Gruss, D., Spreitzer, R., and Mangard, S. Cache Template Attacks: Automating

Attacks on Inclusive Last-Level Caches. In USENIX Security Symposium (2015).

[7] Hennessy, J. L., and Patterson, D. A. Computer Architecture, Fifth Edition: A
Quantitative Approach, 5th ed. Morgan Kaufmann, San Francisco, CA, USA, 2011.

[8] Hund, R., Willems, C., and Holz, T. Practical Timing Side Channel Attacks

against Kernel Space ASLR. In S&P (2013).

[9] IDRIX. VeraCrypt, https://veracrypt.fr 2018.

[10] Intel. An introduction to the intel quickpath interconnect, Jan 2009.

[11] Intel. Rogue system register read, https://software.intel.com/

security-software-guidance/software-guidance 2018.

[12] Jang, Y., Lee, S., and Kim, T. Breaking Kernel Address Space Layout Randomiza-

tion with Intel TSX. In CCS (2016).
[13] Kiriansky, V., and Waldspurger, C. Speculative buffer overflows: Attacks and

defenses. CoRR arXiv 1807.03757, 2018.

[14] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg,

M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre

attacks: Exploiting speculative execution. In S&P (2019).

[15] Miller, M. Speculative store bypass, https://blogs.technet.microsoft.com/srd/

2018/05/21/analysis-and-mitigation-of-speculative-store-bypass 2018.

https://veracrypt.fr
https://software.intel.com/security-software-guidance/software-guidance
https://software.intel.com/security-software-guidance/software-guidance
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass

[16] Osvik, D. A., Shamir, A., and Tromer, E. Cache Attacks and Countermeasures:

the Case of AES. In CT-RSA (2006).

[17] Phoronix. Linux 4.12 To Enable KASLR By Default, https://www.phoronix.com/

scan.php?page=news_item&px=KASLR-Default-Linux-4.12 2017.

[18] Schwarz, M., Schwarzl, M., Lipp, M., and Gruss, D. NetSpectre: Read arbitrary

memory over network. CoRR arXiv 1807.10535, 2018.

[19] Sorin, D. J., Hill, M. D., and Wood, D. A. A Primer on Memory Consistency and
Cache Coherence. 2011.

[20] Stecklina, J., and Prescher, T. LazyFP: Leaking FPU register state using

microarchitectural side-channels. CoRR arXiv 1806.07480, 2018.

[21] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,

Silberstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. Foreshadow: Ex-

tracting the keys to the Intel SGX kingdom with transient out-of-order execution.

In USENIX Sec (August 2018).
[22] Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F.,

Silberstein, M., Strackx, R., Wenisch, T. F., and Yarom, Y. Foreshadow-NG:

Breaking the virtual memory abstraction with transient out-of-order execution,

https://foreshadowattack.eu/foreshadow-NG.pdf 2018.

[23] Yarom, Y., and Falkner, K. Flush+Reload: a High Resolution, Low Noise, L3

Cache Side-Channel Attack. In USENIX Security Symposium (2014).

[24] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-Tenant Side-

Channel Attacks in PaaS Clouds. In CCS (2014).

https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12
https://www.phoronix.com/scan.php?page=news_item&px=KASLR-Default-Linux-4.12
https://foreshadowattack.eu/foreshadow-NG.pdf

	1 Introduction
	2 Background
	2.1 The Microarchitecture
	2.2 Out-of-order execution
	2.3 Address Spaces
	2.4 Cache Attacks

	3 A Toy Example
	4 Building Blocks of the Attack
	4.1 Executing Transient Instructions
	4.2 Building a Covert Channel

	5 The Meltdown Attack
	5.1 Step 1: Reading the Secret.
	5.2 Step 2: Transmitting the Secret
	5.3 Step 3: Receiving the Secret
	5.4 Dumping Physical Memory

	6 Evaluation
	6.1 Leakage and Environments
	6.2 Meltdown Performance
	6.3 Limitations on ARM and AMD
	6.4 Real-World Meltdown Exploit

	7 Countermeasures
	8 Conclusion
	References

