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Abstract—Microarchitectural side-channel attacks have be-
come significant threats to computer system security. While
writing side-channel-resistant code can mitigate these attacks,
it is time-consuming and error-prone. Detection approaches
provide an alternative by monitoring the system for signs of
ongoing attacks. However, distinguishing between malicious and
benign processes is complex, error-prone, and ineffective against
sophisticated attacks.

In this paper, we propose a novel approach, IRQGuard, which
shifts the focus to proactive mitigation. IRQGuard enables the
victim to monitor its own microarchitectural events resulting
from microarchitectural state changes. Leveraging existing CPU
features, IRQGuard uses interrupt requests (IRQs) triggered
by victim-specific microarchitectural state changes within pre-
defined code regions. This self-monitoring eliminates noise of
unrelated applications, enabling immediate detection and re-
sponse to potential attacks. Our proof-of-concept implementation
demonstrates that IRQGuard stops information leakage in under
200 CPU cycles, outperforming current methods significantly.
We evaluate IRQGuard on both cryptographic (OpenSSL) and
non-cryptographic (toilet command-line utility) applications. We
demonstrate IRQGuard’s real-world viability by protecting an
OpenSSH server from cache attacks. IRQGuard offers a prac-
tical, low-overhead solution for mitigating a wide range of
microarchitectural attacks on Intel, AMD, and Arm CPUs.

I. INTRODUCTION

Recent years have shown that microarchitectural side-
channel attacks are a danger to the security of computer
systems. Mitigating microarchitectural side-channel attacks
is challenging both at the software and the hardware level.
While software can be written to resist side-channel at-
tacks [46], [27], this is typically only done for cryptographic
implementations [49], [13], [6] due to performance overhead
and non-negligible complexity of such code. State-of-the-
art techniques for defense in depth and protecting general
applications from side-channel attacks rely on detection at
runtime [66], [40], [41], [43], [55]. Existing proposals mainly
rely on continuously sampling performance-monitoring coun-
ters (PMCs) that count microarchitectural events. However,
these techniques suffer from significant limitations. First, the
detection is asynchronous, requiring constant evaluation of
PMC readings and still leaving a small but powerful window of
opportunity for an attack. This window is often in the range of
milliseconds—enough to leak an entire cryptographic key to an
attacker before the attack is stopped. The constant evaluation

often also requires non-negligible resources, such as an entire
CPU core or dedicated machines [66], [50]. Second, the
detection is typically applied in an unfocused way, including
the entire system, i.e., various applications that do not have
to be protected. As a trade-off, the detection either suffers
from many false positives, as, e.g., memory-intensive parts of
applications can easily be misclassified as cache attacks [16],
or has to use a high threshold that still allows camouflaged
attacks [31]. Third, most proposals do not discuss what the
detection approach does on a (false) positive. Kosasih et al.
[31] also identified these problems in concurrent work. They
develop new camouflaged attacks that mask their malicious
execution patterns behind benign program execution, allow-
ing them to evade detection effectively. They conclude that
it is uncertain whether real-time cache side-channel attack
detection systems can be deemed effective for practical use
in real-world scenarios. Thus, monitoring the entire system
with performance counters appears to be a dead end.

In this paper, we emphasize that the victim needs to monitor
itself, i.e., only its own microarchitectural events, instead of
relying on a third party that can only monitor the microar-
chitectural events of the entire system. As a result, there is
significantly less noise in the observed events, and an attacker
can neither hide in the noise nor attack at such a low speed
that it would drown in the noise. In other areas, it is already
realized that it is most effective when the victim monitors itself
to prevent leakage. For example, tamper-resistant security
modules destroy their data when detecting tampering [48].
This is also true outside of computer science, where, e.g.,
ATMs destroy money on attacks using the intelligent banknote
neutralization system that dyes banknotes during an attempted
theft. In these cases, it is clear that the attack target has
to monitor itself instead of a third party monitoring the
environment, as the attack target can identify an attack quicker
and thus react immediately.

To apply the same idea to microarchitectural attacks, we
propose IRQGuard1, a technique that leverages existing con-
figurable CPU features for proactively mitigating microarchi-
tectural side-channel attacks. We request the CPU to issue an

1IRQ stands for interrupt request, the type of CPU exception we use in our
proof-of-concept implementation to immediately stop a victim



exception in the form of interrupt requests (IRQs) based on
victim-specific configurable microarchitectural state changes
within a specified code region of the victim. The main intuition
is that microarchitectural attackers need to observe changes in
the microarchitectural state caused by secret-dependent oper-
ations in the victim. Thus, if the victim stops before changing
the state, there is no observable leakage for the attacker. With
IRQGuard, the CPU issues an interrupt when a predefined
number of microarchitectural state changes is reached. This
diverts the control flow of the victim to a predefined handler,
stopping the leakage almost instantly. Contrary to previous
work, victim-observable state changes within a critical code
section instead of attacker-created state changes in the entire
system within a time window are used for attack mitigation. As
the threshold for microarchitectural events is measured over a
fixed code snippet of the victim, IRQGuard makes camou-
flaged attacks [31] difficult to impossible. Thus, IRQGuard is
not a passive monitoring, but a proactive mitigation approach.

We demonstrate our PoC implementations on Intel, while
showing that the same approach works for AMD and Arm
CPUs, which makes our approach applicable to a wide range
of systems. As the entire logic for triggering interrupts is
handled in hardware, IRQGuard does not require any software-
based sampling component that has to run all the time. IRQ-
Guard simply provides transaction-style constructs to protect
code against various side-channel attacks. These transactions
are similar to Cloak [17], but configurable in terms of events
and number of events. Thus, unlike Cloak, IRQGuard is
neither limited to cache misses nor to Intel CPUs. IRQGuard
can stop the leakage after fewer than 200 CPU cycles, thus
outperforming all related approaches, besides Cloak, by orders
of magnitude.

We demonstrate IRQGuard on OpenSSL, an application
regularly used to demonstrate side-channel attacks [5], [42],
[18]. To demonstrate the real-world applicability, we protect
the OpenSSL library inside OpenSSH and demonstrate that
OpenSSH still works as long as no attack is mounted against
it. Furthermore, by hardening the toilet command-line
utility, which is used to render text as ASCII art, we show
that IRQGuard can protect non-cryptographic targets from
leaking their access patterns. To demonstrate the mitigation
of TLB-based attacks, we show that IRQGuard can mitigate
TLBleed [15]. For all evaluated attacks, IRQGuard effectively
mitigates exploitation by stopping the leakage entirely or at
least significantly reducing the leakage rate.

IRQGuard is a practical mitigation for a series of microar-
chitectural side-channel attacks. Due to its generic hardware-
based concept, IRQGuard can mitigate a wide range of mi-
croarchitectural attacks as long as the CPU features a method
to raise an exception (e.g., an interrupt) when a configurable
number of microarchitectural events is reached for the victim.
Note that transient execution attacks are out of the scope
of this work. The most related tool to our approach, as it
also uses a hardware-based approach to protect applications
from microarchitectural side-channel attacks, is Cloak [17].
However, Cloak is based on Intel TSX, a now deprecated

instruction-set extension on Intel CPUs, whereas our approach
works on Intel, AMD, and Arm CPUs. Whereas Cloak is
limited to stopping a program after the first cache miss,
IRQGuard allows the developer to choose to either behave
the same or configure an additional error margin. The ability
to rapidly abort a program under attack, together with the low
runtime overhead, makes IRQGuard a practical solution that
can be widely deployed on CPUs.

To summarize, we make the following contributions:
1) We introduce a novel approach to use interrupt requests

sent by the CPU to actively mitigate ongoing microarchi-
tectural attacks by observing microarchitectural events per
victim-instruction sequence instead of globally over time.

2) We present IRQGuard, an open-source2 proof-of-concept
(PoC) implementation showing that our approach mitigates
Flush+Reload, Prime+Probe, and TLBleed.

3) We demonstrate IRQGuard’s real-world applicability
by hardening the OpenSSL library and protecting an
OpenSSH server.

4) We show IRQGuard’s versatility by hardening the non-
cryptographic toilet command-line utility.

II. BACKGROUND

In this section, we introduce the necessary background on
side-channel attacks, transient-execution attacks, and PMCs.

A. Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks are a class of secu-
rity vulnerabilities that exploit implementation details in the
microarchitecture of modern computer systems. By mounting
side-channel attacks, attackers can extract sensitive informa-
tion, such as cryptographic keys [61], [21], [33], [37], [63],
[5], [42], [18], [28], [36]. These attacks exploit that different
CPU operations have different performance characteristics,
e.g., varying execution times or power consumption.

Various microarchitectural components have been exploited
in side-channel attacks [64], [44], [7], [2], [14], [45], [65].
Flush+Reload [64] and Prime+Probe [44] are two prominent
examples of cache-based side-channel attacks (or cache at-
tacks). Both attacks yield a primitive to observe whether a
victim process has accessed memory location M . While for
Flush+Reload, M is a shared memory address between the
attacker and the victim process, this is not needed for Prime+
Probe as long as the attacker and victim execute on the same
CPU. In Flush+Reload, the attacker first flushes M from the
CPU cache using a cache maintenance instruction, such as
clflush. Next, the attacker waits for the victim to finish
its sensitive computation. Lastly, the attacker times the access
to M . As the access time decreases for cached memory, the
attacker can reason about the cache state of M . In Prime+
Probe, the attacker exploits that a memory address M can only
be stored at one of n positions in the CPU cache. Accessing
these n memory addresses and thereby caching all of them
and evicting the memory address M is the first step of Prime+

2https://github.com/cispa/irqguard

https://github.com/cispa/irqguard


Probe. Next, the attacker waits for the sensitive computation
of the victim. Afterward, the attacker times the access to all n
memory addresses. If all accesses are fast, the victim did not
access a memory address colliding with M , as accessing one
of these addresses evicts one of the n memory addresses used
in the first step.

An attacker exploiting TLBleed [15] performs steps similar
to a Prime+Probe attacker. The difference is that the attacker
spies on accesses for an entire memory page P and targets the
TLB instead of the CPU cache. First, the attacker evicts the
virtual-to-physical address mapping from page P by accessing
memory pages colliding with the TLB set of P . Then, the
attacker accesses the memory pages and measures the access
time.

An effective defense against side-channel attacks is
constant-time programming [27], which ensures that control-
and data flow are independent of secret values. While constant-
time programming is used for state-of-the-art cryptographic
implementations, it is tedious and error-prone to write pro-
grams in such a way.

B. Performance-Monitoring Counters

Performance-monitoring counters (PMCs) are hardware
counters built into modern CPUs to count the number of
specific microarchitectural events in the system. Such events
include the number of executed instructions, cache misses, and
mispredicted branches [22].

On Intel architectures, PMCs are implemented as registers
and are split into two groups: programmable and fixed coun-
ters. While the fixed counters FIXED_CTRx count predefined
events, a user can utilize programmable counters PMCx to
count a specific event by modifying the corresponding con-
trol register PERFEVTSELx. Similar mechanism exist for
AMD [1, Chapter 17] and Arm [3, Chapter G8.4]. As PMCs
may overflow, it is possible to configure a control register to
generate an interrupt on a counter overflow.

III. THREAT MODEL

We assume that the attacker and victim execute code on
the same machine. The attacker can execute native code with
user-level privileges. The victim deploys a program executing
computations protected by our approach. We refer to this
program as the protected program for the remainder of the
paper. The attacker can execute their attacks on a co-located
CPU core, including the sibling thread of the victim program’s
logical core, i.e., the hyperthread.

We consider all side-channel attacks discussed in Sec-
tion V to be in scope. We exclude attacks directly exploiting
hardware vulnerabilities instead of victim behavior, such as
Meltdown-type attacks and microarchitectural fault attacks
(e.g., Rowhammer), as well as attacks that require hardware
access by the attacker. As our approach can be applied to
some of these attacks given further assumptions, we discuss
under which assumptions IRQGuard can be used for further
microarchitectural attacks in Section VII.

Protected
Program

IRQGuard

Attacker PMU

Starts guarding phase 1

Programs PMCs 2Attacks and influences perf. 3 Interrupts execution 4

Sending signal 4

Fig. 1: After starting the guarding phase, the core executing
the victim program is interrupted by a threshold violation of
the PMCs, and IRQGuard signals the protected program.

IV. IRQGUARD

In this section, we describe the concepts and the imple-
mentation details of IRQGuard. We introduce the main idea
of letting the victim configure threshold for its expected mi-
croarchitectural state changes. For tight thresholds, we demon-
strate that IRQGuard can profile the expected performance
characteristics of the victim program. During said profiling
phase, IRQGuard also keeps track of memory accesses done
by the victim program. This allows IRQGuard to prefetch the
expected memory accesses during later phases to minimize the
noise further, thus allowing even tighter detection thresholds.
Finally, this section discusses how the PMC interrupts stop
the victim immediately and what the post-abort actions of the
victim are.

A. Design Idea

The design of IRQGuard relies on the fact that side-channel
attacks require the victim to interact with the microarchitecture,
which can be observed by monitoring the hardware during
the victim’s execution. For example, side channels can be
described as an interplay of 3 types of sequences: reset,
trigger, and measurement sequence [59]. In this setting, the
reset and measurement sequence are executed by the attacker
and can thus be hidden from detection mechanisms by, e.g.,
artificially slowing down the attacker’s computations and thus
effectively hiding the computation in the noise of all running
processes [31]. However, the trigger sequence must be ex-
ecuted by the victim process and thus cannot be hidden that
easily if only the victim process is monitored. The observation
is that for side-channel attacks, leakage only exists if the victim
changes the microarchitectural state to a different state than
the reset state induced by the attacker. This modification by
the victim can be captured using PMCs on the victim side. For
example, in a cache attack, the attacker sets a cache line to
uncached and waits for the victim to change it to the cached
state. Based on this interaction of a victim process with the
microarchitecture, the idea is that we can detect the anomalies
on the victim side. We know that an attacker may have altered
the state of the microarchitecture to force the victim to change
the microarchitectural state, resulting in information leakage.

As PMCs expose the internal state of the microarchitec-
ture, they can record fine-grained information about, e.g., the
number of cache misses, retired micro-ops, or pipeline flushes.



In our approach, the victim program is protected by profiling
its behavior under normal circumstances, i.e., without an on-
going microarchitectural attack. Profiling means recording the
influence of the program’s confidential computations on PMCs
programmed with different events discussed in Section IV-C.
Based on this profile, for each PMC, we define a threshold,
i.e., an event count that, if exceeded, indicates an ongoing
attack with a high probability. Assume a PMC’s maximal
value is PMCmaxvalue. The supported bit-width for PMCs
on the system defines this value. We define a threshold t and
program each PMC to PMCmaxvalue − t. These thresholds
are devised such that they should never be exceeded in a
normal execution but only when a malicious actor is mounting
a microarchitectural attack against the program. We configure
the PMC to send an interrupt upon overflowing. Consequently,
the interrupt immediately stops and notifies the protected
program if a threshold violation (and thus likely an attack)
occurs. The remainder of this section explains this approach
in more detail based on our PoC implementation.

B. IRQGuard Overview

IRQGuard allows programs to alter their control flow if an
attack is ongoing, effectively preventing further leakage. Our
approach applies to cryptographic and non-cryptographic pro-
grams. Our PoC implementation consists of a kernel module,
which implements the main logic of the tool, and a C library,
which acts as an API. Alternatively, a userspace application
can be built that interacts with the Linux perf interface.
While we use such an implementation for Arm and AMD (cf.
Section VII), we observe better results using our kernel module
implementation. The developer annotates the critical part of
their code, e.g., a decryption routine or a secret-dependent
array lookup, by inserting calls to functions of the IRQGuard
API. We refer to these code parts as the guarded section.

IRQGuard comprises two offline phases and an online
phase. The first offline phase (the profiling phase) is to find
thresholds for a set of performance-monitoring events during
the execution of the guarded section (Section IV-D). The
second offline phase is the recording of expected memory
accesses of the guarded section to prefetch these memory
accesses at runtime, thus reducing the number of unrelated
events in PMCs (Section IV-E). The offline phases are only
required once. The online phase (the guarding phase), lever-
ages the PMCs to mitigate attacks on the guarded section
of the protected program (Section IV-F). If the CPU triggers
an interrupt, it is forwarded to the protected program, thus
enabling the programmer to act accordingly, e.g., abort the
execution (Section IV-G).

Figure 1 shows an overview of IRQGuard protecting a
program. The program can be shipped to a system with (un-
privileged) untrusted users. The previously generated thresh-
olds, together with the annotations of the critical functions,
allow IRQGuard to program the PMCs of the shared system.
IRQGuard immediately halts the execution of the protected
program when attacked during the guarded section, thus mit-
igating the ongoing attack.

C. Preparation: Choosing the Optimal Performance-
Monitoring Events

IRQGuard relies on PMCs to handle anomalies. We have
to choose events that correlate with the side channels that we
want to defend against. Choosing the optimal set of events
to protect against the largest possible set of side-channel
attacks is challenging. Previous research already came up with
approaches to detect specific attacks based on PMCs [67], [29],
[43], [66], [10], [41], [40], [55], [56]. For our work, we use
a combination of PMCs where previous work identified that
they correlate well with side-channel attacks. Modern CPUs
typically feature 4 or 8 programmable PMCs [24, Chapter 18].
Typically 3 fixed-function PMCs are accessible [24, Chapter
18].

The entire list of configured events we use for our PoC
implementation is shown in Appendix A together with the at-
tacks associated with each event. Our configuration combines
PMCs for the L1 and last-level cache (LLC) with TLB misses
and branch mispredictions. Note that L2 cache attacks also
leave traces in the L1 cache, so we do not require specific
PMCs for them. Furthermore, note that this configuration
should be seen as a default configuration. Developers using
IRQGuard can extend or adapt the configuration to their own
needs. Side-channel attacks found in the future might need
additional performance events for IRQGuard to defend against
their exploitation.

D. Offline Phase: Profiling Phase

Based on the selected list of performance-monitoring events,
IRQGuard generates thresholds for these events that are ex-
ceeded in the presence of microarchitectural attacks. For this,
the developer adds the IRQGuard API calls to the program.
All that is needed are calls to 4 IRQGuard API functions:
At program start, IRQGuard must be initialized with a call to
iguard_init. Afterward, the function iguard_parse_-
pmc_config is given a filepath to a configuration file con-
taining the configurations of the PMCs. Note that in this step,
the configuration does not contain any thresholds yet. The code
to be protected (i.e., the guarded section), e.g., the decryption
routine of a cryptographic algorithm, has to be annotated by
calling the function iguard_start_protection before
and the function iguard_stop_protection after that
code, resembling the usage of Cloak [17]. While the efficacy
of our approach decreases with longer and more complicated
code inside the guarded section, there are no theoretical
restrictions on the code.

Developers should wrap the code processing confidential
information, e.g., cryptographic keys or secret-dependant con-
trol flow, inside the guarded section. For example, an RSA
signing application wraps the decryption routine inside the
guarded section to prevent leaking of the private key handled
by the function.

For profiling, the developer signals IRQGuard to run in
profiling mode and executes the program multiple times in
common scenarios, allowing IRQGuard to generate a baseline
profile of the PMC values during executions without an



ongoing attack. After profiling, the thresholds in the config
are updated. A naı̈ve but promising approach is to take
the maximum observed value and add an error margin. We
observe that for our PoC implementation, 20% is a sufficient
error margin for most cases (cf. Section V). While in the
default case, the program is profiled on the same system that
is used in the guarding phase, Section V also shows that
thresholds can be ported to another similar system. Requiring a
threshold to distinguish between benign and malicious activity
is a common endeavor for our tool and related work [17],
[50], [43]. While our PoC implementation only uses a fixed
threshold, the approach also works with more sophisticated
detection mechanisms, e.g., the change-point detection method
proposed by Zhang et al. [66]. After a PMC overflows and
transfers the execution from the protected program to IRQ-
Guard, IRQGuard can decide whether it notifies or signals the
protected program based on further metrics.

E. (Optional) Offline Phase: Prefetching Memory Accesses

For an optimal efficacy of IRQGuard, an accurate distinc-
tion from microarchitectural events introduced by an ongo-
ing attack compared to the expected events is key. Hence,
IRQGuard supports automated prefetching of the expected
memory accesses of the victim program, as shown to be
effective by Cloak [17]. This prefetching reduces the number
of microarchitectural state changes in the absence of an
attacker. Thus, for a normal operation, most memory accesses
are cached by the prefetching, resulting in few to no cache
misses in the guarding phase as long as no attacker tampers
with the microarchitectural state. The only manual interaction
is that the user needs to create a prefetching profile for the
protected program. This is done by executing a single script,
which requires no additional user interaction.

Our implementation uses Intel Pin [26] to record the mem-
ory access pattern of the protected program. In our case,
we mark the location of the guarded section, i.e., between
iguard_(start/stop)_protection, with a unique
instruction such that we can identify the protected section
from our custom Intel Pin plugin. We choose the instruction
verr as it is a legacy x86 instruction without side effects that
modern compilers are not expected to emit. Once the guarded
section is identified, all memory accesses of it are logged.
As memory accesses tend to change depending on the control
flow of a function, we further heuristically fill gaps in the
previously created memory address trace by adding dummy
memory accesses whenever two addresses are less than 4 cache
lines apart. The resulting list of memory accesses, encoded
as relative offsets in the binary, is stored in a file and loaded
into memory in the API function iguard_init. Eventually,
every call to iguard_start_protection prefetches all
these memory addresses to prevent them from causing cache
and TLB misses during the guarded section. Additionally,
we prefetch stack addresses during runtime by prefetching
cache lines close to the current stack pointer. The treatment of
stack addresses differs as these may change for each function
invocation and hence cannot be predicted as easily.

F. Online Phase: Guarding Phase

With the profile and the prefetching offsets, the developer
can ship the program to a production system where attacks can
occur, e.g., a server running untrusted code. The production
system also needs to run an instance of IRQGuard, i.e., the
kernel module. The developer needs to add the thresholds
from the profiling phase (cf. Section IV-D) to the PMC
configuration file, whose filepath is specified as argument in
iguard_parse_pmc_config.

Once the profiling mode of IRQGuard is disabled, its
behavior changes as follows. During the guarding phase,
the PMCs are set to interrupt mode, resulting in pro-
gram interruption immediately once a threshold violation
occurs. The actual monitoring of IRQGuard only takes place
for the guarded section, i.e., the code between the func-
tions iguard_(start/stop)_protection. IRQGuard
resets and enables the PMCs in iguard_start_protec-
tion and stops them in iguard_stop_protection.
More precisely, IRQGuard writes the value PMCmaxvalue −
thresholdPMCn into each PMC, where thresholdPMCn cor-
responds to the configured threshold and PMCmaxvalue is
the maximum value a PMC before overflowing. Additionally,
IRQGuard programs the counters such that an overflow raises
a performance-monitoring interrupt.

Note that the PMCs are only programmed on the CPU
core that the protected program runs on. Furthermore, note
that a more sophisticated implementation can stop the PMCs
when the operating system switches the context away from
the protected program. Alternatively, the operating system can
store the PMC value on each context switch and restore it
if the program continues, effectively eliminating events from
other applications. While our PoC implementation does not
support that feature, we stress that a production-ready version
can implement it in the same way as context switches are
handled for the perf utility. While this feature requires either
a custom kernel or support by the Linux kernel, it would
further improve the precision of the IRQGuard approach,
as such an extension would significantly reduce the impact
of all unrelated programs on a system without any negative
consequences.

IRQGuard registers an interrupt handler for the
performance-monitoring interrupt (PMI) using the Linux
kernel function register_nmi_handler. If the threshold
for one of the PMCs is exceeded, i.e., a PMC overflows, the
hardware triggers said PMI. This interrupt triggers the handler
installed by the kernel module, which immediately sends
a signal to the protected program. To make it convenient
for the programmer, the signal is handled by a call to
setjmp. This construct is wrapped into a macro that can
be used inside if-conditions. Thus, all the programmer
needs to do is to put the sensitive computations after an
if(!iguard_detected_attack). In the else-case,
the threshold violation should be handled.



1 iguard_init();
2 iguard_parse_pmc_config("./pmc_config.iguard");
3 iguard_start_protection();
4 uint8_t secret = 0b01101001;
5 size_t idx = 0;
6 int i = 0;
7 while (i < N) {
8 if (!iguard_detected_attack();){
9 sync_with_attacker();

10 if ((secret >> idx) & 1)
11 for (int r = 0; r < REPS; r++) one_bit();
12 else
13 for (int r = 0; r < REPS; r++) zero_bit();
14 idx = (idx + 1) % 8;
15 i += 1;
16 } else { break; }
17 }
18 iguard_stop_protection();

Listing 1: The victim program. Lines highlighted in orange
and italic are added for the protected variant of the program,
i.e., when IRQGuard is used to harden the program.

G. Post-Abort Actions

When IRQGuard stops the application, it allows the devel-
oper of the victim application to control the resulting action.
Depending on the concrete scenario, different actions may be
chosen. One option would be to stop the victim program in
case of an attack. While this yields a denial-of-service gadget
for an attacker, it is also a strong defensive approach as it
prevents any further attack vector from this point onwards.
Note that an adversary with local code execution can typically
abuse simpler ways to disrupt the running system, e.g., by
exhausting the system’s resources.

Another less strict option capable of handling false positives
is to wait with further actions until the nth violation. Note
that retrying until n violations occur exposes the application
to a greater leakage by the attacker. Thus, n has to be selected
carefully, depending on how much leakage is acceptable. Also,
the handler can employ more complex heuristics, as shown
in previous work [8], [40], [55], [54]. The handler can then
decide to abort or continue the computation.

Instead of stopping the protected program entirely, one
can apply additional mitigations or defenses. For example,
cloud applications could isolate the hardware components
of different tenants on a IRQGuard-reported violation. Also,
mitigations that yield more runtime overhead can be acti-
vated, e.g., page coloring or related approaches for detecting
microarchitectural attacks [67], [29], [43], [66], [10], [41],
[40], [55], [56]. This scenario is especially beneficial if one
wants to combine stronger defense mechanisms, which induce
high-performance penalties, with IRQGuard. This way, the
performance-heavy defense mechanisms do not have to run all
the time but can be started on a IRQGuard-reported violation.
Note that the amount of leakage may increase depending on
the chosen mitigation strategy.

V. EVALUATION

We evaluate the effectiveness and performance impact of
IRQGuard. As IRQGuard stops ongoing attacks by preventing
further leakage, we primarily evaluate at which point in time
we stop the ongoing attack, i.e., how much leakage remains.

We evaluate the effectiveness based on a vulnerable pro-
gram, referred to as the victim program. We intentionally
create a victim program exposing a redundant and clear
memory access pattern to simulate a highly-vulnerable target.
The victim’s control flow depends on a secret value that
the attacker can infer by leaking the control flow using
a side-channel attack. We evaluate how Flush+Reload (cf.
Section V-A), Prime+Probe (cf. Section V-A), and TLBleed
(cf. Section V-B) can leak the control flow and how IRQGuard
can mitigate this. Listing 1 shows the main part of the victim
program.

The victim program iterates over the bitstring 01101001.
We choose this bitstring as it contains an equal number of ones
and zeroes while being less trivial than a simple alternating
pattern. As the control flow depends on the secret, side-channel
attacks that differentiate calls to one_bit and zero_bit
can recover the secret. To further strengthen the attacker, the
function sync_with_attacker signals the attacker when
a new iteration begins. This yields a strong attacker model
with a synchronized attacker and victim. This is reasonable as
if IRQGuard can defend against a strong attacker, it also stops
more realistic but weaker attackers.

In the following, we evaluate how the victim program
performs in the presence of different side-channel attackers
and how these attacks perform when the program is hardened
by IRQGuard. Listing 1 includes the changes to the victim
program when it is protected by IRQGuard as shown in
orange font and italic. As described in Section IV, the guarded
section of the program is annotated by calls to iguard_-
(start/stop)_protection. While one can further op-
timize this by only guarding the loop’s body, this would
require additional mental effort by the developer. If there
is an attack, as indicated by iguard_detected_attack
returning true, the victim program breaks its loop, avoiding
further information leaks.

A. Cache Attacks

We demonstrate multiple side-channel attacks based on the
CPU cache, i.e., cache attacks, and how IRQGuard mitigates
them. We instantiate the victim program with N=1000 and
REPS=1000. As post-abort action (cf. Section IV-G), we
choose to stop the program immediately. While this action
may not be applicable for every scenario, we choose this
action as any further leakage is completely dependent on the
actions choosen for further mitigation. Furthermore, stopping
the program restricts the evaluation on the leakage before
IRQGuard notifies the system about the attack, which is the
primary concern of this work.
Flush+Reload Flush+Reload [64] can leak the secret of the
program by leaking from the I-cache. The attacker flushes
a cache line contained in one_bit (or alternatively on
zero_bit), waits, and accesses it, thus measuring its cache



TABLE I: Flush+Reload threshold stability experiments for
varying CPUs.

CPU Threshold F-Score Detection Time

Intel Xeon E-2176M 156 LLC mis. 1.0 2.09 bits
Intel Xeon E-2176M 175 LLC mis. 1.0 2.94 bits
Intel Xeon E-2176M 195 LLC mis. 1.0 3.92 bits
Intel Xeon E-2176M 214 LLC mis. 1.0 3.96 bits
Intel Xeon E-2176M 234 LLC mis. 0.99 3.97 bits
Intel Xeon E3-1505M v5 156 LLC mis. 1.0 2.66 bits
Intel Xeon E3-1505M v5 175 LLC mis. 1.0 2.98 bits
Intel Xeon E3-1505M v5 195 LLC mis. 0.98 2.94 bits
Intel Xeon E3-1505M v5 214 LLC mis. 1.0 3.03 bits
Intel Xeon E3-1505M v5 234 LLC mis. 0.98 4.42 bits
Intel Core i5-6400T 156 LLC mis. 0.95 3.22 bits
Intel Core i5-6400T 175 LLC mis. 0.96 3.96 bits
Intel Core i5-6400T 195 LLC mis. 0.95 4.0 bits
Intel Core i5-6400T 214 LLC mis. 0.97 4.09 bits
Intel Core i5-6400T 234 LLC mis. 0.98 4.76 bits

state. For improved accuracy, the attacker can mount the attack
multiple times per bit.

After a threshold violation, the loop is exited, and no further
cache accesses are leaked. For evaluation, we execute the
victim in the unprotected scenario and the protected scenario
(cf. Listing 1). The threshold is generated by taking the maxi-
mum of multiple runs without an ongoing attack and adding a
20% error margin (cf. Section IV-D). In our experiment, this
yields a threshold T of 195 LLC misses on an Intel Xeon E3-
1505M v5 running Ubuntu 20.04 with Linux kernel 5.4.0. To
evaluate different thresholds, we repeat the experiments with
T − 20%, T − 10%, T + 10%, and T + 20%. We repeat the
experiment on two different machines, one with a different
microarchitecture. The exact thresholds and results are shown
in Table I. We observe that when the threshold is violated,
the leakage signal vanishes. When executing the attack 100
times, we observe that average leakage rate is reduced to the
first 5 bits out of 1000, i.e., we reduce the attack’s leakage by
99.5%. To evaluate the efficacy of IRQGuard, we additionally
execute the experiment 100 times in which we remove the
reload and flush step of the attacker, i.e., removing the minimal
amount of attacker code that needs to be removed to disable
the attack. We label IRQGuard stopping the attack in this
case as a false positive, thus allowing us to calculate the F-
scores for each threshold as shown in Table I. Furthermore,
Table I shows how the threshold derived on one CPU acts
when transfered to a different CPU. While, we observe that the
threshold is slightly less effective on the Intel Core i5-6400T,
it is still effective in stopping the attack after the first 5 bits. We
conclude that while thresholds are transferable between CPUs,
it is beneficial to generate thresholds on the target system to
maximize the efficacy of IRQGuard. Note that this is still a
realistic scenario as large cloud providers typically have large
sets of homogeneous systems.
Prime+Probe Another cache-based attack that can be
mounted against the victim program is Prime+Probe [44].
First, the attacker finds an eviction set for the function one_-
bit (or alternatively zero_bit). Afterward, the attacker
repeatedly measures the time it takes to access the eviction set.

If the access time increases, the attacker learns that one_bit
was executed. Hence, the attacker can infer the current secret
bit. We evaluate Prime+Probe on the shared L3 cache. The
signal defaults to zero when the loop is aborted.

We evaluate this attack on the same Intel Xeon E3-1505M
v5. After multiple profiling runs, we take the maximum
observed value and add the 20% margin, resulting in a
threshold of 461 LLC misses. We execute the experiment
100 times. We observe that the attack is stopped after, on
average, 163.94 of 1000 leaked bits, i.e., IRQGuard reduces
the leakage by 83.6%. IRQGuard stops the attack in all 100
cases. Furthermore, we execute the attack 100 times without
the prime step interfering with the victim’s state, i.e., a benign
version of the attack program. In this case, IRQGuard never
reports a violation, resulting in an F-score of 1. While a
remaining leakage of 16.39% intuitively sounds high, an
attack on a 2048 bit RSA key would still require breaking
a 1712 bit key with this leakage. Note that while attacks like
Heninger et al. [20] exist that recover an entire key from a
partial key, even these attacks require more than 16.39% of the
key. Furthermore, such attacks require very small exponents,
i.e., e ≤ 3, which are not commonly used in practice.

To analyze the performance of our setting on a different
machine, we execute the experiment a second time on an Intel
Xeon E-2176M running Ubuntu 20.04 with Linux kernel 5.4.0.
We again observe an F-score of 1, but IRQGuard stops the
attack after, on average, 2 bits. Thus, we reduce the leakage
by 99.8%. We conclude that IRQGuard reliably stops cache
attacks on the LLC.

B. TLB Attacks

IRQGuard can defend programs against TLB-based attacks
such as TLBleed [15]. We instantiate the victim program
with REPS=1000 and N=1000. To mitigate such attacks,
IRQGuard uses performance-monitoring events correlating
with TLB misses. On the tested Intel CPUs, TLB misses are
counted by the DTLB_LOAD_MISSES.WALK_STLB_HIT
performance-monitoring event. The attacker repeatedly evicts
the TLB set mapping to the address of one_bit while
observing the eviction time. If one_bit is accessed by the
victim, this access evicts an entry of the attacker eviction set
from the TLB. Thus, an attacker can infer from the access
time whether the access has occurred. Note that the attacker
executes on the hyperthread sibling of the victim’s core.

We evaluate our attack on the same Intel Xeon E3-1505M
v5. We run the experiment 100 times with the enabled attack
and 100 times with a benign attacker program. We take the
default threshold with the 20% error margin described in
Section IV. This procedure results in 137 TLB misses as a
threshold. For the malicious attacker program, instead of a
leakage of 1000 bits on the unprotected binary, the binary
protected by IRQGuard does not leak any bits, i.e., the leakage
is reduced by 100%. The reason we directly abort during the
measurements of the first bit is that due to the noisy signal
transmitted through the TLB, the attacker evicts the TLB
multiple times during each run of the victim. For the benign



attacker program, we observe no false positives, resulting in
an F-score of 1.

To evaluate the threshold on a second machine with the
same microarchitecture, we rerun the experiment on an Intel
Xeon E-2176M running Ubuntu 20.04 with Linux kernel 5.4.0.
We also observe an F-score of 1. However, the attack is only
mitigated after an average leakage of 23.97 of 1000 bits. Note
that with a threshold of 137, even a theoretically ideal attacker
can at most leak 137 ‘1’-bits, as at least one TLB miss is
required for learning that a processed bit is a ‘1’-bit.

C. Reliability

We evaluate IRQGuard’s reliability with two experiments.
First, we measure how many instructions are still architec-
turally executed after the threshold is exceeded, i.e., a PMC
overflowed. Second, we measure how long instructions may
transiently execute afterward. Both these experiments evaluate
how fast IRQGuard can stop the program after detecting a
threshold violation.
Abort Timing We measure the time between exceeding the
threshold of a PMC and aborting the normal control flow
of the protected program. To reliably measure this, we use
two PMCs. While the first PMC is used by IRQGuard and
is configured with a threshold, the second PMC is used to
monitor the progress of the program.

We configure the first PMC to track the performance-
monitoring event LONGEST_LAT_CACHE.MISS, i.e., the
event responsible for tracking the number of LLC misses.
We configure IRQGuard to abort the normal protected pro-
gram’s control flow after 5 LLC misses. The sample pro-
gram causes 5 cache misses followed by a sled of multiple
divps instructions. The code for this can be found in
Appendix A. We program the second PMC with the event
FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE to
count the number of retired divps instructions. Thus, the
second PMC reports how many instructions were executed
after the threshold violation.

We run the code 3 times, two times as warm-up runs, to
make sure that everything besides the intended cache misses
results in a cache hit and a third time to measure the impact
that we want to observe. We execute this experiment 1000
times on an Intel Xeon E-2176M running Ubuntu 20.04
with Linux kernel 5.4.0. For all runs, we observe that the
event FP_ARITH_INST_RETIRED.128B_PACKED_SIN-
GLE counts on average 3.5 (with a median of 0) retired
instructions after the threshold violation. If we add an mfence
instruction before the divps sled, we do not observe any
retired divps instructions anymore, as expected. Note that
this experiment suffers from the design limitation that we
cannot reason about the potential retirement of all possible
instructions, such as nop instruction. We conclude that, on a
violation, IRQGuard diverts the instruction stream of the pro-
tected program almost immediately and orders of magnitude
faster than related approaches (cf. Section V-E).
Transient Window After Violation To determine the
number of transiently executed instructions after a thresh-

old violation, we configure the performance-monitoring event
ARITH.DIVIDER_ACTIVE on the second PMC while
keeping the remainder of the previous experiment setup.
ARITH.DIVIDER_ACTIVE counts the number of cycles
the CPU’s divider unit executes, including transient instruc-
tions. Note that as ARITH.DIVIDER_ACTIVE includes the
workload of transiently executed instructions, it allows us to
measure the length of the transient window in cycles. In line
with the abort-timing experiment, we use the same machine
and repeat the measurements 1000 times. For these 1000 runs,
we observe an average activity of 192.49 cycles (with a median
of 167). We conclude that IRQGuard can rapidly abort the
protected program within only a few cycles after a threshold
violation. This stopping time aligns with the Intel TSX-based
attack mitigation of Gruss et al. [17].

D. Performance Impact

In this section, we evaluate the performance impact of
IRQGuard on an Intel Xeon E3-1505M v5 with Ubuntu 20.04
running Linux kernel 5.4.0. First, we measure the overhead
that the API calls introduce for the previously discussed victim
program. Second, we evaluate the overhead introduced for
other applications on the same system.

We measure the execution time of our victim program (cf.
Listing 1) when IRQGuard is added and compare that to the
execution time without IRQGuard. We run the victim program
with varying values of N , i.e., we iterate over a different
number of bits. We repeat each measurement 1000 times
and observe that IRQGuard’s performance overhead is below
0.64% for the protected program. The precise numbers are
shown in Appendix A.

We also evaluate how IRQGuard impacts the performance of
unrelated programs using the performance benchmark SPEC
CPU 2017. To create a realistic scenario for IRQGuard, we
create a protected program requesting IRQGuard to program
each PMC to the highest possible threshold. This threshold is
unlikely to be reached by the protected program but suffices
to show the performance overhead that active PMCs have
on a system. As the execution time of SPEC CPU may
still lead to an overflow of the PMCs, we just enable the
profiling mode of IRQGuard. This prevents the program from
stopping when an overflow is reached but expresses the same
performance overhead. In parallel, we execute the SPEC CPU
benchmarking suite. We execute SPEC CPU once with and
once without IRQGuard running on the system. On average,
IRQGuard introduces an overhead of 0.84%. Details are
shown in Appendix A.

E. Comparison to Similar Tools

We analyze how IRQGuard compares to related tools from
previous works that are based on PMCs. Related tools that are
designed to protect applications against microarchitectural at-
tacks are typically based on PMCs [31] and can be split into 4
major categories based on their underlying detection approach.
These categories are static analysis of binaries [29], [32], ML-
based anomaly detection systems [34], [10], [41], [40], [19],



[55], [54], threshold-based detection systems [43], [17], [66],
and detection systems that mix the previous categories [50],
[8].

Kosasih et al. [31] showed that most PMC-based miti-
gations are evaluated insufficiently and concluded that such
mitigations can be evaluated by comparing the effectiveness,
overhead, detection speed, and underlying threat model. While
the effectiveness of most tools is evaluated using PoC imple-
mentations of microarchitectural attacks, the evaluation details
strongly differ between these works, and most papers do not
provide artifacts, making it hard to draw further conclusions.
Note that the reported effectiveness of the best related tools
align with our approach. Thus, we focus further comparison
on the remaining aspects.

Table II provides a summary of approaches related to
IRQGuard for protecting applications from microarchitectural
attacks without requiring custom hardware. A crucial aspect of
proactively protecting against attacks is how fast an approach
can react to an attacker [31]. This is determined by the
sampling rate and the time it takes to stop the execution of the
attacker or victim program. Compared to previous work, our
approach excels in this category as we leverage CPU excep-
tions and do not rely on sampling rates. This allows IRQGuard
to abort the program orders of magnitudes faster than previous
works. Other threshold-based approaches like Payer et al. [43]
and Zhang et al. [66] rely on sampling intervals, making them
slower than hardware-based approaches like ours. While this
can partially be overcome by lowering the sampling intervals,
this immediately increases the overhead of said tools and raises
the question whether such slow sampling intervals are even
feasible in a realistic environment. To stop cache attacks in a
similar time window as IRQGuard, they would need to sample
on every single cache miss, thus increasing the overhead by a
large amount.

The only other tool that is in the same order of magnitude,
when it comes to stopping an attack, is Cloak [17]. An es-
sential limitation of Cloak is that it requires Intel TSX, which
is only available on some Intel CPUs and was already depre-
cated [25]. Hence, Cloak cannot be used anymore on CPUs
with up-to-date microcode. While Intel TSX can be force-
enabled outside SGX, doing so makes the system vulnerable to
Meltdown-type attacks [51]. Furthermore, Cloak only supports
stopping after the first cache miss occurred. While IRQGuard
can be configured the same way, it is beneficial to configure
an error margin, which allows for handling a handful of
unexpected events occurring. This allows IRQGuard to protect
considerably longer code snippets while maintaining reliable
results. For example, for protecting an RSA implementation,
Cloak has to be inlined in the exponentiation loop of the
decryption routine as it cannot handle the entire decryption
routine [17]. However, IRQGuard can handle such a routine,
which is demonstrated in Appendix A. Performance-wise, we
observe that the overhead of our tool is in the same order of
magnitude as the best comparable tools.

Another crucial aspect is the underlying threat model of
the tools [31]. Related approaches typically monitor the entire

TABLE II: Comparison of IRQGuard with different tools.

Method Tool Overhead Sampling Rate Time to Stop

St
at

ic [29] none n.a n.a
[32] none n.a n.a

M
ac

hi
ne

L
ea

rn
in

g [34] “low”2 100ms ≥100ms
[10] “negligible”2 ≤ 3 µs 0.2-0.64ms
[41] 0.3-11.3% 10-100 enc. ≥10 encryptions
[40] 1-2% 50-100 enc. ≥50-100 encryptions
[19] 7.7-24.88% 1ms 50ms
[55] n.a 50 µs ≥50 µs
[54] 4-30% 1-5000 µs ≥1-5000 µs

T
hr

es
ho

ld [43] 0-5.92% 1 s ≥ 1 s
[17] 0-248% instant ≤ 500 CPU cycles
IRQGuard 0.08-8.4% instant 192 CPU cycles
[66] <5% 100-1000 µs 120-5110 µs

O
th

er [50] none n.a. 0.5-312min
[8] <5% CPU util. 100 µs 1ms

2 These papers did not provide a concrete number.

system to identify and stop malicious processes. The draw-
back is that they have to differentiate between all possible
benign and malicious workloads based on the performance
characteristics. Kosasih et al. [31] demonstrate that this leads
to problems for advanced adversaries as they can hide in
the noise of benign processes. Our approach shifts the focus
from the entire system to specific parts of the victim process,
which attackers cannot alter. Thus, defenders know ahead of
time what performance characteristics to expect, making it
hard to evade IRQGuard. For example, while the camouflaged
attack discussed by Kosasih et al. [31] does evade related
approaches, it only impacts the performance footprint of the
attacker process. Thus, it does not affect the effectiveness
of IRQGuard, as the victim’s behavior is unchanged. For a
more thorough discussion on camouflaged attacks, we refer
the reader to Section VII-A.

We conclude that our approach allows stopping the informa-
tion leakage multiple orders of magnitude faster while having
an overhead that is on par with related tools. This is achieved
because we do not rely on software-based runtime monitoring
or ML classifiers but directly leverage CPU hardware. Further-
more, by focusing our detection on the victim side instead of
the attacker side, we make it harder for attackers to evade our
approach as they cannot hide their attack code in a complex
but benign program.

VI. CASE STUDIES

In this section, we demonstrate that IRQGuard can protect
cryptographic and non-cryptographic real-world applications.
We protect an AES implementation used in OpenSSL (Sec-
tion VI-A) and based on the protected OpenSSL library, harden
OpenSSH (Section VI-B) to demonstrate a real-world scenario
for IRQGuard. In Section VI-C, we show the applicability to
non-cryptographic applications by demonstrating IRQGuard
on the command-line utility toilet. We evaluate all case
studies on an Intel Xeon E3-1505M v5 running Ubuntu 20.04
with Linux kernel 5.4.0.

A. Prime+Probe on OpenSSL AES T-Tables

In this case study, we demonstrate IRQGuard on the AES T-
table implementation of OpenSSL 1.0.1. This shows that IRQ-



Fig. 2: Heatmaps of the leakage when attacking the unmodified
and the protected variant of the OpenSSL AES encryption via
Prime+Probe. The X-axis shows the different plaintext bytes,
while the Y-axis shows the different cache lines. The key is
encoded in the diagonal.

Guard can protect realistic libraries against microarchitectural
attacks. This library is commonly used to demonstrate side-
channel attacks [5], [42], [18], [28], [35], [16], [11], [53], [36],
[9], [47]. The attacker exploits Prime+Probe to leak the secret
AES key from the encryption routine. We add IRQGuard to the
encryption routine and analyze how the attacker’s performance
decreases. Therefore, the attacker runs on the same CPU as
the victim.

Overview The attacker mounts a Prime+Probe attack on the
T-tables. Previous work has demonstrated that such attacks
are feasible by leaking the T-table access patterns of every
encryption round [5], [42], [18], [28], [35], [16], [11], [53],
[36], [9], [47]. In line with previous work [65], we restrict
the attack to the first encryption round. We add the IRQGuard
API calls directly to the library at the start and end of the
function AES_encrypt. Alternatively, developers could de-
ploy IRQGuard from within their own program, i.e., wrapping
the library calls. We mount the attack on the protected and
unprotected library and use LLC misses as the event. Note
that due to the prefetching of IRQGuard, the CPU caches all
data apart from the single primed cache line of the attack.
Without an ongoing attack, thus the entire working set is
cached. Hence, we set the threshold to 1 LLC miss.

Results Figure 2 shows the leakage heatmaps when mounting
the attack on the unmodified and the IRQGuard-protected
variant of the AES encryption. For visualization purposes,
we use the secret key consisting of all zeroes, which results
in a visually diagonal access pattern. The key leakage for
the unmodified version is clear enough for an attacker to
infer the correct key bytes. In contrast, the protected library
variant does not show a relevant access pattern. The runtime
of the encryption increases by an average of 8.4% or 4.25ms
(n = 100) for the protected variant. While this runtime
overhead seems impactful, we stress that this is due to the
low runtime of the operation and that the overhead is only
in the orders of a few milliseconds. IRQGuard successfully
mitigates the ongoing attack with a precision of 1.0 and a
recall of 0.99. We conclude that IRQGuard can successfully
be applied to real-world cryptographic libraries.

B. Hardening OpenSSH using IRQGuard

Based on the previous case study, we show that IRQGuard is
capable of protecting real-world applications by hardening an
OpenSSH server. We use the protected variant of OpenSSL
(cf. Section VI-A), which OpenSSH uses to implement the
AES ciphermode. We choose OpenSSH version 7.5 due to its
compatibility with OpenSSL 1.0.1.
Overview As the peers of an SSH connection send and
receive messages, we need to protect both the AES_encrypt
and AES_decrypt functions. We take the setup of the
previous case study and additionally add the IRQGuard API
calls to the AES_decrypt function. Due to the additional
overhead of the OpenSSH process compared to the previous
case study, we increase the threshold to 18 LLC misses.
The OpenSSH server sandboxes the processes responsible for
receiving and handling incoming clients to protect against
memory corruption attacks. As the default configuration of this
sandbox prevents calls to the IRQGuard API, these calls either
have to be allowlisted or the sandbox has to be disabled. For
the sake of simplicity, we choose to turn off the sandbox for
our experiment. A production-ready variant instead requires
to allowlist the syscalls to the IRQGuard API in the Seccomp
configuration of OpenSSH and to mount the device file of
IRQGuard into the chroot jail.
Results To verify that the OpenSSH server works, we connect
a client to the hardened OpenSSH server and execute the fol-
lowing commands: id; ls /etc;cat /etc/passwd.
Each invocation of this command, including establishing the
SSH connection, invokes the AES functions 878 times. After
50 repetitions, we observe that the hardened variant executes
all commands successfully with an average runtime of 645ms.
As the unprotected variant of OpenSSH takes an average
runtime of 616ms, IRQGuard results in an overhead of
4.5%. We observe no false positive for any of the 43 900
AES invocations. We verify that a violation of the threshold
stops the SSH connection, which results in a disconnect of
the client with varying messages depending on whether the
violation occurs during the connection buildup or afterwards.
We conclude that IRQGuard is capable of protecting real-
world software in a realistic scenario.

C. Flush+Reload on Text Rendering

In this case study, we show that IRQGuard is not limited
to protecting cryptographic implementations. We protect the
toilet command-line utility, which renders text as ASCII
art. Additionally to being a non-cryptographic application, the
victim also uses syscalls within the protected code snippet,
demonstrating that this is not a problem for IRQGuard. The
attacker mounts Flush+Reload on libcaca, the shared li-
brary used by toilet for rendering. The attacker and victim
only have to share the LLC.
Overview The attacker tries to extract the input of toilet,
i.e., the string that is rendered as ASCII art. Therefore,
the attacker targets the function caca_put_figchar, the
function responsible for rendering a glyph to an internal buffer
that is subsequently written to the standard output. Within



this function, a loop iterates through all glyphs and exits
early if the requested glyph is found. Hence, an attacker can
mount Flush+Reload on this loop. The number of cache hits
correlates with the glyph index in the font file. We use per-
formance degradation on the victim to ensure the attacker can
reliably distinguish the number of loop iterations. Although
a library function causes the leakage, we apply IRQGuard in
the main function of the toilet application. We add the
calls to IRQGuard around the render_list function, which
is responsible for the entire rendering, including creating
the canvas, rendering the string, outputting the canvas, and
cleaning up. We choose LLC misses as the performance-
monitoring event. After profiling the application, we choose a
threshold of 5000 LLC misses. On an attack, we directly abort
the application instead of retrying to render the string.
Results Without an ongoing attack, the ASCII art is success-
fully rendered in 100% of the executions (n = 1000). Hence,
the regular usage of the tool is unaffected. We observe that
the attack can distinguish any provided randomly chosen 3
letters in 100% of the runs (n = 100). With IRQGuard, we
never observe a successful attack. We conclude that IRQGuard
can effectively mitigate side-channel attacks even on generic
applications containing syscalls.

VII. DISCUSSION

In this section, we discuss the limitations of IRQGuard, as
well as the applicability to other systems.

A. Defending Against Camouflaged Attacks

As side-channel attacks are not actively exploited in the
wild, we evaluate our tool on our implementation of these
attacks. While this is in line with related work [31], real-
world attackers can use evasion techniques. For example,
Kosasih et al. [31] show that previous approaches can be
circumvented by hiding the malicious payload in the perfor-
mance overhead of a large process. Due to the design of
our approach, i.e., the focus on the victim process instead
of the attacker process, such an evasion has no influence on
IRQGuard. Note that using the same approach for the victim
process does not work, as the attacker cannot influence the
victim’s code. Alternatively, an attacker could slow down their
attack to minimize its performance footprint. While this limits
the capabilities of an attacker, due to the longer attack window,
it makes it harder to detect the attack. Compared to previous
tools that cannot detect an attack as soon as the attack is
slow enough, our approach can still detect such attacks if
the configured threshold is low enough. Depending on the
scenario, the threshold for IRQGuard can be minimal, e.g.,
in Section VI-A, which makes it impossible for an attacker to
mount an attack, no matter how stealthy.

B. Defending Against Further Attacks

We demonstrate the applicability of our approach for pro-
tecting against several types of microarchitectural attacks.
While we do not explicitly demonstrate it, the design of
IRQGuard allows protecting against further attacks, such as

further variations of cache attacks and Spectre attacks. For
example, to harden a program against Spectre-PHT attacks,
developers can configure IRQGuard to monitor the state of
the event Branch Misses Retired.

Two other attack types we do not discuss in the paper are
Rowhammer and Meltdown-type attacks. While these attacks
can be detected using PMCs [29], [39], the problem lies in
the threat model of these attacks. For both attack types, the
attacker attacks the system directly without interacting with
a victim process, which IRQGuard can protect. This is in
contrast to attacks in which the attacker targets the code of
a victim process, which can be protected by IRQGuard. Thus,
defending against these requires restrictions on the attacker’s
capabilities, e.g., when the attacker’s code is restricted to a
sandbox environment protected by IRQGuard. Further, it is
challenging to come up with a meaningful profiling step.

PMCs have been abused for attacks [52], [12], [7], [60].
However, our approach only requires unprivileged access to
PMC values of the own process, which is already possible on
some distributions, e.g., Arch Linux. If only own counters can
be configured, leaking PMCs using Meltdown 3a [23], [4],
[60] is also not a security problem.

IRQGuard can only mitigate microarchitectural attacks if
there is a PMC for the exploited event that can be used on
the victim. However, for example, power side channels, such
as PLATYPUS [37] or Hertzbleed [57], are not detectable
using PMCs. Nevertheless, this limitation is not as severe as
the similar limitation for PMC-based detections. For example,
Flush+Flush [16] claims to be a stealthy side-channel attack,
as it does not trigger a large number of cache-miss events in
the attacker. Still, IRQGuard protects against Flush+Flush, as
the victim suffers from cache misses.

C. Limitations of Performance Counters

While IRQGuard is a generic approach for mitigating mi-
croarchitectural attacks, the approach has certain limitations.
Performance-counter Reliability IRQGuard fundamentally
relies on the correctness and precision of the underlying
PMCs. Hence, if the used PMCs do not reliably count the
microarchitectural events, the effectiveness of IRQGuard also
suffers. The same problem is also inherent in other approaches
using PMCs. Weaver et al. [58] showed that specific PMCs on
some systems tend to overcount the counted event. Similarly,
PMCs also count events in transient execution [24, Chapter
18, 19]. However, in combination with IRQGuard, this is not a
security problem, as overcounting only leads to false positives
and, thus, unnecessary retries of the protected code. Only
undercounting could lead to a security problem, but we are
unaware of such behavior on any CPU.
Performance-counter Selection The efficacy of IRQGuard
fundamentally relies on the correct selection of performance-
monitoring events. IRQGuard can only mitigate attacks that
the selected events can reliably monitor. The best combination
of events for this task is still an open research problem.
While previous work has evaluated a large set of PMCs for
detecting microarchitectural attacks [67], [29], [43], [66], [10],



[41], [40], [55], [56], the counters are often chosen based on
intuition and experience instead of a systematic evaluation.
For our PoC implementation, we also rely on these previously
identified counters as they lead to good results. We leave a
generic methodology for finding the most related PMCs for
future work.

D. Other Microarchitectures

While we evaluate IRQGuard on Intel CPUs, the approach
is not limited to them. It only has 3 requirements for the
underlying microarchitecture. First, a mechanism must exist
to monitor microarchitectural elements during attacks. Second,
this monitoring must be able to raise an interrupt on a specific
event. Third, it must be possible to configure this event from
software. These basic requirements are fulfilled for various
(micro-) architectures. We experimentally verify that PMC
overflows can be used to raise an interrupt that can be caught
in userspace, thus allowing a port of IRQGuard for the given
architecture, on AMD Zen to Zen 3, Intel Sandy Bridge to
Alder Lake, and an Arm Cortex A73. These properties are
also documented for ARMv8 [3] and have been unofficially
documented based on the Apple M1 [30]. Hence, IRQGuard
can be implemented on a wide range of CPUs. While our PoCs
rely on PMCs, IRQGuard could theoretically also work with
other mechanisms. For example, a CPU could build such an
interface specifically for IRQGuard.

We also test IRQGuard inside virtual machines. KVM with
QEMU 6.2.0 emulates all required properties of PMCs in
passthrough mode, allowing IRQGuard to work from within
VM guests. Neither on AWS nor on Hyper-V could we get
IRQGuard running. However, hypervisors support the required
functionality, as verified with KVM, making it possible to
use this approach in the cloud if supported by the cloud
provider. By saving and restoring PMCs on VM exits and en-
tries, respectively, hypervisors can ensure that no performance
information from the hypervisor nor other VMs is exposed
and that the IRQ can be forwarded to the correct VM.

VIII. CONCLUSION

We presented a novel approach, IRQGuard, which allows
victims to proactively mitigate microarchitectural side-channel
attacks by monitoring their own microarchitectural events. By
detecting specific microarchitectural state changes in defined
code regions and triggering interrupt requests, IRQGuard
prevents information leakage almost instantly. We showed
that our proof-of-concept implementation induces minimal
overhead and works on Intel, AMD, and Arm. We showed
IRQGuard’s effectiveness on realistic code bases by applying
it to the OpenSSL library and hardening an OpenSSH server.
We further demonstrated IRQGuard on a generic Linux utility,
including syscalls. With its novel use of interrupts, IRQGuard
is a practical, low-overhead solution for mitigating a wide
range of microarchitectural attacks, even against camouflaged
attackers.
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APPENDIX

Table III shows the evaluation results of the performance
overhead of a system when IRQGuard enabled the PMCs
on the system. Results are given by the SPEC CPU 2017
benchmark.

Table IV shows the default PMC configuration used
in IRQGuard. Performance-monitoring events marked with
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TABLE III: SPEC CPU 2017 benchmarking results.

Benchmark SPEC Score Overhead
Baseline IRQGuard [%]

600.perlbench s 5.71 5.71 0.00%
602.gcc s 8.36 8.37 0.12%
605.mcf s 6.42 6.54 1.87%
620.omnetpp s 3.88 3.88 0.00%
623.xalancbmk s 4.47 4.48 0.22%
625.x264 s 4.71 4.71 0.00%
631.deepsjeng s 3.94 3.95 0.25%
641.leela s 3.59 3.59 0.00%
648.exchange2 s 10.40 10.50 0.96%
657.xz s 2.23 2.33 4.95%

Average 0.84%

TABLE IV: Default PMC configuration used in IRQGuard.

PMC Programmed Event Associated Attacks

PMC0 LLC Misses (A) (L3 and flush-based) Cache Attacks
PMC1 DTLB_LOAD_MISSES.WALK_STLB_HIT TLB Attacks
PMC2 MEM_LOAD_RETIRED.L1_MISS (L1) Cache Attacks

A are architecturally defined events; other events are
microarchitecture-specific [24, Chapter 19], i.e., their exact
name may differ for different microarchitectures.

Table V shows the runtime overhead of the code snippet in
Listing 1 when executed with different values for N .

The code in Listing 2 measures the number of executed
and retired instructions after a threshold violation. IRQGuard
is configured to stop after 5 cache misses, i.e., in line
7. Afterward, the divider is used by the divps instruc-
tions. The divider usage is monitored via the PMC event
ARITH.DIVIDER_ACTIVE.

In this case study, we show that IRQGuard also allows
protecting more complex cryptographic implementations by
protecting an older version of the library GnuPG (1.4.13) and
its RSA implementation, which is vulnerable to Flush+Reload.
Note that using exactly this GnuPG version aligns with related
work [64], [62], [38] and thus eases comparison. The attacker
targets an RSA decryption process that the attacker can query
with arbitrary ciphertexts. While the attacker and victim use
shared memory, they run on different physical CPU cores and
only share the LLC.

TABLE V: The runtime overhead of the code in Listing 1.

Iterations
(N in

Listing 1)

IRQGuard
Overhead

Runtime
Default
(median)

Runtime with
IRQGuard
(median)

10 0.64% ± 1.64 321.52ms 323.41ms
20 0.29% ± 1.60 322.53ms 323.48ms
40 0.33% ± 1.62 323.32ms 324.39ms
60 −0.12% ± 1.83 325.14ms 324.89ms
80 0.15% ± 1.83 325.95ms 326.27ms

100 0.29% ± 1.73 326.15ms 327.03ms
200 0.46% ± 1.68 328.89ms 330.61ms
300 0.39% ± 1.67 333.86ms 334.60ms
400 0.08% ± 1.64 338.34ms 338.26ms
500 0.19% ± 1.52 341.62ms 342.22ms

1 ; rax = pointer to 5 consecutive
2 ; uncached memory pages
3 mov rbx, [rax]
4 mov rbx, [rax + 4096]
5 mov rbx, [rax + 8192]
6 mov rbx, [rax + 12288]
7 mov rbx, [rax + 16384] ; <- 5th cache miss
8 ; violates threshold
9 divps xmm0, xmm1

10 divps xmm0, xmm1
11 divps xmm0, xmm1
12 [...]

Listing 2: Code to measure the number of executed and
retired instructions after a threshold violation. IRQGuard is
configured to stop the program after 5 cache misses.

Overview The attacker targets the GnuPG functions mpih_-
sqr_n and mul_n. As the mul_n function is only called
if the currently-processed secret bit is ‘1’, the attacker can
leak the secret by monitoring the access to those functions. To
mitigate this attack, we take the most straightforward approach
for guarding the code of the library and start the guarding
phase (cf. Section IV-F) directly after entering the function
secret, which contains the decryption routine of the RSA
implementation. For the error handling, we also choose the
most simplistic variant and abort execution on an attack. For
further possible actions, we refer to Section IV-G. We choose
LLC misses as an appropriate performance-monitoring event
to monitor. After profiling secret 100 times, we see a PMC
value of 705 LLC misses with a maximum of 2586. We
determine 3000 LLC misses as an appropriate threshold for
IRQGuard.
Results For the unprotected library, we observe that our
attack, on average, recovers 2030.95 bits, i.e., 99.6% of the
secret key (σ = 6.8, n = 100). When protected by IRQGuard,
the leakage signal only exists at the beginning, i.e., before
the configured threshold is violated, as the protected library
stops the encryption on a violation. Consequently, an attacker
can only leak 29.45 bits, on average, before exceeding the
threshold (σ = 0.5, n = 100). IRQGuard mitigates the attack
with a recall and a precision of 1. IRQGuard causes a runtime
overhead for the RSA encryption routine of 0.3%.
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