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About this presentation

This talk is about how DRAM leaks information across security boundries
• Not about software bugs
• It is about hardware design becomes an attack vector
• Focus on Intel x86-64 - but problem is DRAM - thus applies to other

architectures as well
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Take aways

Take aways
• DRAM design is security relevant
• DRAM leaks information

Exploit this to:
• Covertly extract information cross VM, cross CPU
• Spy on other software
• Enable e�cient and targeted row hammer attacks
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Introduction



Demo

DEMO
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What you just saw

• 0 software bugs
• Covert communication in and out of VM
• Covert communication in and out of JS sandbox
• This isn’t magic..
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Whoami

• Michael Schwarz
• PhD Student, Graz University of Technology
• Likes to break stu�
• Twitter: @misc0110
• Email: michael.schwarz@iaik.tugraz.at

6

@misc0110
michael.schwarz@iaik.tugraz.at


And the team

The research team
• Peter Pessl
• Daniel Gruss
• Clémentine Maurice
• Stefan Mangard

from Graz University of Technology
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Whoami

• Anders Fogh
• Principal Security Researcher, GDATA Advanced Analytics
• Playing with malware since 1992
• Twitter: @anders_fogh
• Email: anders.fogh@gdata-adan.de
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From code to capacitor



From code to capacitor
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Page tables



Virtual and physical addressing

• 0x41414141 is a virtual address of the current process
• The CPU need a physical address to talk to DRAM
• Thus translation is needed
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Why translation

Why address translation: Run multiple processes securely on a single CPU
• Let applications run in their own virtual address space
• Create exchangeable map from “virtual memory” to “physical memory”
• Privileges are checked on memory accesses
• Managed by the operating system kernel and hypervisor
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Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) O�set (12 b)48-bit virtual address

CR3 PML4PML4E 0PML4E 1
···#PML4I
···PML4E 511

PDPTPDPTE 0PDPTE 1
···#PDPTI
···PDPTE 511

Page DirectoryPDE 0PDE 1
···PDE #PDI
···PDE 511

Page TablePTE 0PTE 1
···PTE #PTI
···PTE 511

4 KiB PageByte 0Byte 1
···O�set
···Byte 4095 12



Virtual and physical addressing

Summary:
• The most significant bits of the virtual address determines the page
• A page is almost always 4 kB large
• The least significant bits (almost always 12 bits) is an o�set into the page
• Only the page is translated and security checked
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Data caches



Road block: Data Caches

Memory (DRAM) is slow compared to the CPU
• bu�er frequently used memory for the CPU
• every memory reference goes through the cache
• transparent to OS and programs

= Problem: We want to speak to DRAM, not a cache
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Bypass cache road block

We must remove our address from the cache to talk to DRAM
• Native code: CLFLUSH instruction
• Javascript: Evict Gruss et al. 2016
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The memory controller



How does physical addresses map to memory

Memory controller in the processor has a mapping function

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

Based on physical addresses
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How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip
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DRAM organization

chip
bank 0

row 0
row 1
row 2

. . .
row 32767
row bu�er

64k Cells1 Capacitor,
1 transitor each
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First hint of trouble

• A row is 64k Cells: 8 kB
• Security was checked for 4 kB blocks

= security domains may share rows
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Reading from DRAM



The Row bu�er

• DRAM internally is only capable of reading entire rows

• Capacitors in cells discharge when you “read the bits”
• Bu�er the bits when reading them from the cells
• Write the bits back to the cells when you’re done

= Row bu�er
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How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

CPU reads row 1,row bu�er empty!
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How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy
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How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return
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How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU reads row 1,row bu�er now full!

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

Less work!Is it faster?
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We can measure a di�erence
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Figure 1: Row hits
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We can measure a di�erence
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Figure 2: Row conflicts
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We can measure a di�erence
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Di�erence between row hits (≈ 225 cycles) and row conflicts (≈ 247 cycles) on
an Intel Core i7 Ivy Bridge machine. 24



Summary

• Security is typically checked for 4 kB pages

• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains
= DRAM leaks information
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First attack: Reversing the CPU



Remember this?

Memory controller in the processor has a mapping function

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

• Based on physical addresses

• Problem: this function is undocumented
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Reversing the mapping function

Reverse engineer the mapping function
• You can reverse engineer the mapping of your processor using row hits and

misses
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Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Di�erent bank Same bank
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Reversing the mapping function - Approach
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Reversing the mapping function - Approach
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Reversing the mapping function - Approach
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Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041
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Measure access time whenrepeatedly accessingbase and random address
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Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
46434541

3

3

Di�erent bank Same bank
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Reversing the mapping function - Approach

• Repeat the process for all banks

• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set
• This is still very fast (in the order of seconds)
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Results

...678911 1012131416171819202122...

BA0
BA1
Rank

Ch.

15

BA2

• We developed a toolkit that reverse engineers the mapping fully
automatically

• Takes between seconds and minutes
• You can download it here: https://github.com/IAIK/drama

30
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What next?

• We know which address maps to which part of the DRAM

• We can do that fully automatic on any new system
• Once we have the function, we can exploit that knowledge
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What next?
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Spying through the DRAM



Imagine this code
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Spying

• We want to spy on the behaviour of a victim

• The victim will not know that we spy on it
• We can use row hits to get useful information
• Advantage over cache attacks: it works across

CPUs
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Spy activates row0, get copiedto row bu�er0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

activate
Spy activatesshared row

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Row conflict,high timing
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...but what if thevictim accessedthe shared row...

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 activate

copy
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...before thespy activates it
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Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Row hit, faster
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Two related questions

• What is the chance we can share a row with
important victim data?

• What kind of spatial accuracy will we get?
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Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row
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Accuracy

• If you say that two pages share one row
you are not wrong...

• ...but not right either
• Why?
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Accuracy

• Not the whole physical page must be in one row

• Depending on the mapping function, a page can be distributed over multiple
rows

• This is the case if address bits 0 to 11 are used for the mapping
• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup

(bit 7)
• One physical page is distributed over 4 rows
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Accuracy
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8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2
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Results

Row sharing
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sandy Bridge /w 1 DIMM

2 pages per row

. . .

row bu�er

. . .

row bu�er
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Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox
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DRAM Covert Channel



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sender and receiverdecide on one bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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. . .
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Receiver mea-sures access timeto its address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy
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0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

copy
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Sender accessesits address
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
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row bu�er

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

On next accessof receiver, thereis a row miss

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

Receiver hashigh access time
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How our demo really works

What is a covert communication?

• Two programs would like to communicate but are not allowed to do so
• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS
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Scenario

We are “trapped” inside a VM without network hardware
• There is no communication between guest and host

• We want to get data out of the VM
• We cannot run binaries on the host system
• There are no known software bugs in either host, guest or virtualization

software
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The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM
• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page
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The gory details - bits

• Use the row miss attack primitive

• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank
• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.
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The gory details - bits
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Figure 3: Multiple measurements per bit to have a reliable detection.
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The gory details - Packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC Seq

• Communication is based on packets

• Packet starts with a 2-bit preamble
• Data integrity is checked by an error-detection code (EDC)
• Sequence bit indicates whether it is a retransmission or a new packet
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Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits
• Error correction
• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM
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Rowhammer

DRAM bank
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. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips
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Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2! • Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips
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Finding rows

The problem: Finding the victim row and the neighboring rows.
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Finding rows

Solution 1: Spraying - We can fill memory with security relevant information and
hammer randomly

• Seaborn 2015
• Spraying PTE and NaCl sanity checking code
• Problem: Not everything can be sprayed.
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Finding rows

Solution 2: Deduplication
• Razavi et al. 2016
• We can have the operating system / hypervisor copy relevant information to

a known location
• Problem: Deduplication is turned o� in ”serious” cloud and default o� in

most operating systems.
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Finding rows

Solution 3: Locate data - DRAMA: We know the mapping function
• Bhattacharya and Mukhopadhyay 2016
• Cool: We can now target row hammer
• Problem: Physical addresses.

• /proc/PID/pagemap
• cite prefetch
• Other leaks: ex. large pages and cache set congruency.
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DDR4 Row hammer

Knowning the mapping funcion and physical address is what enabled bit flips in
DDR4
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Finding rows

Solution 4: Locate data - DRAMA: Row hits and misses
• If we can invoke victim:
• We can use row miss primitive to locate the bank
• We can use row hits primitive to locate rows

• This is not perfect,
• but we can drastically improve accuracy
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Conclusion



Black Hat Sound Bytes

Black Hat Sound Bytes.
• DRAM design is security relevant
• We can covertly exfiltrate information
• We can spy on other software
• We enable targeted row hammer attacks
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