
DRAMA: How your DRAM becomes a security problem

Michael Schwarz and Anders Fogh
November 4, 2016

1



About this presentation

This talk is about how DRAM leaks information across security boundries
• Not about software bugs
• It is about hardware design becomes an attack vector
• Focus on Intel x86-64 - but problem is DRAM - thus applies to other

architectures as well

2



Take aways

Take aways
• DRAM design is security relevant
• DRAM leaks information

Exploit this to:
• Covertly extract information cross VM, cross CPU
• Spy on other software
• Enable e�cient and targeted row hammer attacks

3



Take aways

Take aways
• DRAM design is security relevant
• DRAM leaks information

Exploit this to:
• Covertly extract information cross VM, cross CPU
• Spy on other software
• Enable e�cient and targeted row hammer attacks

3



Introduction



Demo

DEMO

4



What you just saw

• 0 software bugs
• Covert communication in and out of VM
• Covert communication in and out of JS sandbox
• This isn’t magic..

5



Whoami

• Michael Schwarz
• PhD Student, Graz University of Technology
• Likes to break stu�
• Twitter: @misc0110
• Email: michael.schwarz@iaik.tugraz.at

6

@misc0110
michael.schwarz@iaik.tugraz.at


And the team

The research team
• Peter Pessl
• Daniel Gruss
• Clémentine Maurice
• Stefan Mangard

from Graz University of Technology

7



Whoami

• Anders Fogh
• Principal Security Researcher, GDATA Advanced Analytics
• Playing with malware since 1992
• Twitter: @anders_fogh
• Email: anders.fogh@gdata-adan.de

8

@anders_fogh
anders.fogh@gdata-adan.de


From code to capacitor



From code to capacitor

9



Page tables



Virtual and physical addressing

• 0x41414141 is a virtual address of the current process
• The CPU need a physical address to talk to DRAM
• Thus translation is needed

10



Why translation

Why address translation: Run multiple processes securely on a single CPU
• Let applications run in their own virtual address space
• Create exchangeable map from “virtual memory” to “physical memory”
• Privileges are checked on memory accesses
• Managed by the operating system kernel and hypervisor

11



Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) O�set (12 b)48-bit virtual address

CR3 PML4PML4E 0PML4E 1
···#PML4I
···PML4E 511

PDPTPDPTE 0PDPTE 1
···#PDPTI
···PDPTE 511

Page DirectoryPDE 0PDE 1
···PDE #PDI
···PDE 511

Page TablePTE 0PTE 1
···PTE #PTI
···PTE 511

4 KiB PageByte 0Byte 1
···O�set
···Byte 4095 12



Virtual and physical addressing

Summary:
• The most significant bits of the virtual address determines the page
• A page is almost always 4 kB large
• The least significant bits (almost always 12 bits) is an o�set into the page
• Only the page is translated and security checked

13



Data caches



Road block: Data Caches

Memory (DRAM) is slow compared to the CPU
• bu�er frequently used memory for the CPU
• every memory reference goes through the cache
• transparent to OS and programs

= Problem: We want to speak to DRAM, not a cache

14



Bypass cache road block

We must remove our address from the cache to talk to DRAM
• Native code: CLFLUSH instruction
• Javascript: Evict Gruss et al. 2016

15



The memory controller



How does physical addresses map to memory

Memory controller in the processor has a mapping function

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

Based on physical addresses

16



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

17



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

17



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

17



How is DRAM organized?

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

17



DRAM organization

chip
bank 0

row 0
row 1
row 2

. . .
row 32767
row bu�er

64k Cells1 Capacitor,
1 transitor each

18



DRAM organization

chip
bank 0

row 0
row 1
row 2

. . .
row 32767
row bu�er

64k Cells1 Capacitor,
1 transitor each

18



First hint of trouble

• A row is 64k Cells: 8 kB
• Security was checked for 4 kB blocks

= security domains may share rows

19



First hint of trouble

• A row is 64k Cells: 8 kB
• Security was checked for 4 kB blocks

= security domains may share rows

19



Reading from DRAM



The Row bu�er

• DRAM internally is only capable of reading entire rows

• Capacitors in cells discharge when you “read the bits”
• Bu�er the bits when reading them from the cells
• Write the bits back to the cells when you’re done

= Row bu�er

20



The Row bu�er

• DRAM internally is only capable of reading entire rows
• Capacitors in cells discharge when you “read the bits”
• Bu�er the bits when reading them from the cells
• Write the bits back to the cells when you’re done

= Row bu�er

20



The Row bu�er

• DRAM internally is only capable of reading entire rows
• Capacitors in cells discharge when you “read the bits”
• Bu�er the bits when reading them from the cells
• Write the bits back to the cells when you’re done

= Row bu�er

20



How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

CPU reads row 1,row bu�er empty!

21



How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

21



How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

21



How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU reads row 1,row bu�er now full!

1 1 1 1 1 1 1 1 1 1 1 1 1 1

21



How reading from DRAM works

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

Less work!Is it faster?

21



We can measure a di�erence

220 240 260 280
0

50

100

150

Clock cycles

Fre
que

ncy

Figure 1: Row hits
22



We can measure a di�erence

220 240 260 280
0

50

100

150

Clock cycles

Fre
que

ncy

Figure 2: Row conflicts
23



We can measure a di�erence

220 240 260 280
0

50

100

150

thre
sho

ld
Clock cycles

Fre
que

ncy

Di�erence between row hits (≈ 225 cycles) and row conflicts (≈ 247 cycles) on
an Intel Core i7 Ivy Bridge machine. 24



Summary

• Security is typically checked for 4 kB pages

• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains
= DRAM leaks information

25



Summary

• Security is typically checked for 4 kB pages
• The data caches can be circumvented to use DRAM

• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains
= DRAM leaks information

25



Summary

• Security is typically checked for 4 kB pages
• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks

• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains
= DRAM leaks information

25



Summary

• Security is typically checked for 4 kB pages
• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows

• Through timing we can establish row hits and misses across security
domains

= DRAM leaks information

25



Summary

• Security is typically checked for 4 kB pages
• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains

= DRAM leaks information

25



Summary

• Security is typically checked for 4 kB pages
• The data caches can be circumvented to use DRAM
• 4 kB pages of di�erent security domains can share banks
• 4 kB pages of di�erent security domains can share rows
• Through timing we can establish row hits and misses across security

domains
= DRAM leaks information

25



First attack: Reversing the CPU



Remember this?

Memory controller in the processor has a mapping function

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

• Based on physical addresses

• Problem: this function is undocumented

26



Remember this?

Memory controller in the processor has a mapping function

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

• Based on physical addresses
• Problem: this function is undocumented

26



Reversing the mapping function

Reverse engineer the mapping function
• You can reverse engineer the mapping of your processor using row hits and

misses

27



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Select random baseaddress in one bank
0

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

16

16

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

16

13

13

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

1613

15

15

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

161315

46

46

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

16131546

43

43

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

1613154643

45

45

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

161315464345

4

4

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

161315464345

4

1

1

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
0

161315464345

41

3

3

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Select random baseaddress in one bank
42

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

16

16

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

16

13

13

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

1613

15

15

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315

46

46

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
46

43

43

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
4643

45

45

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
464345

4

4

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
4643454

1

1

Di�erent bank Same bank
28



Reversing the mapping function - Approach

012345

67891011

121314151617

181920212223

242526272829

303132333435

363738394041

424344454647

Measure access time whenrepeatedly accessingbase and random address
42

161315
46434541

3

3

Di�erent bank Same bank
28



Reversing the mapping function - Approach

• Repeat the process for all banks

• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set
• This is still very fast (in the order of seconds)

29



Reversing the mapping function - Approach

• Repeat the process for all banks
• For each bank, we have a set of addresses that map to this bank

• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set
• This is still very fast (in the order of seconds)

29



Reversing the mapping function - Approach

• Repeat the process for all banks
• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system

• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set
• This is still very fast (in the order of seconds)

29



Reversing the mapping function - Approach

• Repeat the process for all banks
• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions

• The alternative: generate every possible XOR function and check if it yields
the same result for all addresses in the set

• This is still very fast (in the order of seconds)

29



Reversing the mapping function - Approach

• Repeat the process for all banks
• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set

• This is still very fast (in the order of seconds)

29



Reversing the mapping function - Approach

• Repeat the process for all banks
• For each bank, we have a set of addresses that map to this bank
• We can see it as a linear equation system
• Solving it gives us the bits used for the mapping functions
• The alternative: generate every possible XOR function and check if it yields

the same result for all addresses in the set
• This is still very fast (in the order of seconds)

29



Results

...678911 1012131416171819202122...

BA0
BA1
Rank

Ch.

15

BA2

• We developed a toolkit that reverse engineers the mapping fully
automatically

• Takes between seconds and minutes
• You can download it here: https://github.com/IAIK/drama

30

https://github.com/IAIK/drama


Results

...678911 1012131416171819202122...

BA0
BA1
Rank

Ch.

15

BA2

• We developed a toolkit that reverse engineers the mapping fully
automatically

• Takes between seconds and minutes

• You can download it here: https://github.com/IAIK/drama

30

https://github.com/IAIK/drama


Results

...678911 1012131416171819202122...

BA0
BA1
Rank

Ch.

15

BA2

• We developed a toolkit that reverse engineers the mapping fully
automatically

• Takes between seconds and minutes
• You can download it here: https://github.com/IAIK/drama

30

https://github.com/IAIK/drama


What next?

• We know which address maps to which part of the DRAM

• We can do that fully automatic on any new system
• Once we have the function, we can exploit that knowledge

31



What next?

• We know which address maps to which part of the DRAM
• We can do that fully automatic on any new system

• Once we have the function, we can exploit that knowledge

31



What next?

• We know which address maps to which part of the DRAM
• We can do that fully automatic on any new system
• Once we have the function, we can exploit that knowledge

31



What next?

32



Spying through the DRAM



Imagine this code

33



Spying

• We want to spy on the behaviour of a victim

• The victim will not know that we spy on it
• We can use row hits to get useful information
• Advantage over cache attacks: it works across

CPUs

34



Spying

• We want to spy on the behaviour of a victim
• The victim will not know that we spy on it

• We can use row hits to get useful information
• Advantage over cache attacks: it works across

CPUs

34



Spying

• We want to spy on the behaviour of a victim
• The victim will not know that we spy on it
• We can use row hits to get useful information

• Advantage over cache attacks: it works across
CPUs

34



Spying

• We want to spy on the behaviour of a victim
• The victim will not know that we spy on it
• We can use row hits to get useful information
• Advantage over cache attacks: it works across

CPUs

34



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Spy activates row0, get copiedto row bu�er0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

activate
Spy activatesshared row

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Row conflict,high timing

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...but what if thevictim accessedthe shared row...

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 activate

copy

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...before thespy activates it

35



Attacks

Attack Primitive: Row hit
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Row hit, faster

35



Two related questions

• What is the chance we can share a row with
important victim data?

• What kind of spatial accuracy will we get?

36



Two related questions

• What is the chance we can share a row with
important victim data?

• What kind of spatial accuracy will we get?

36



Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Row hits

• The smallest unit of physical memory is one page

• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Row hits

• The smallest unit of physical memory is one page
• Pages are usually 4 kB

• DRAM rows are usually 8 kB

• We need the victim’s address and our address in
the same row

37



Accuracy

• If you say that two pages share one row
you are not wrong...

• ...but not right either
• Why?

38



Accuracy

• If you say that two pages share one row
you are not wrong...

• ...but not right either

• Why?

38



Accuracy

• If you say that two pages share one row
you are not wrong...

• ...but not right either
• Why?

38



Accuracy

• Not the whole physical page must be in one row

• Depending on the mapping function, a page can be distributed over multiple
rows

• This is the case if address bits 0 to 11 are used for the mapping
• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup

(bit 7)
• One physical page is distributed over 4 rows

39



Accuracy

• Not the whole physical page must be in one row
• Depending on the mapping function, a page can be distributed over multiple

rows

• This is the case if address bits 0 to 11 are used for the mapping
• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup

(bit 7)
• One physical page is distributed over 4 rows

39



Accuracy

• Not the whole physical page must be in one row
• Depending on the mapping function, a page can be distributed over multiple

rows
• This is the case if address bits 0 to 11 are used for the mapping

• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup
(bit 7)

• One physical page is distributed over 4 rows

39



Accuracy

• Not the whole physical page must be in one row
• Depending on the mapping function, a page can be distributed over multiple

rows
• This is the case if address bits 0 to 11 are used for the mapping
• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup

(bit 7)

• One physical page is distributed over 4 rows

39



Accuracy

• Not the whole physical page must be in one row
• Depending on the mapping function, a page can be distributed over multiple

rows
• This is the case if address bits 0 to 11 are used for the mapping
• For example: Skylake uses low bits for channel (bits 8 and 9) and bankgroup

(bit 7)
• One physical page is distributed over 4 rows

39



Accuracy

0 127

40954 kB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 kB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 kB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 kB row x in BG0 (0) and channel (0)

40



Accuracy

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

0 127

40954 kB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 kB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 kB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 kB row x in BG0 (0) and channel (0)

40



Accuracy

BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)
BG0 (0), Channel (0)BG0 (1), Channel (0)

0 127

40954 kB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 kB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 kB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 kB row x in BG0 (0) and channel (0)

40



Accuracy

BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)
BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)

0 127

40954 kB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 kB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 kB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 kB row x in BG0 (0) and channel (0)

40



Accuracy

BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)BG0 (0), Channel (0)BG0 (1), Channel (0)BG0 (0), Channel (1)BG0 (1), Channel (1)

0 127

40954 kB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 kB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 kB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 kB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 kB row x in BG0 (0) and channel (0)

40



Results

Row sharing
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sandy Bridge /w 1 DIMM

2 pages per row

. . .

row bu�er

. . .

row bu�er

41



Results

Row sharing
DRAM bank

. . .

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Ivy Bridge /w 2 DIMM

4 pages per row

. . .

row bu�er

41



Results

Row sharing
DRAM bank

. . .

row bu�er

. . .

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sky Lake /w 2 DIMM

8 pages per row

41



Results

Row sharing
DRAM bank

. . .

row bu�er

. . .

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sky Lake /w 2 DIMM

8 pages per row

41



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!

• On the latest generation of personal computers
• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information

• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes

• It gets even better on multi-CPU servers
• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



Summary

• We can deduct behavior from memory access much like cache side channel
attacks

• Works cross VM, cross CPU or sandboxed!
• On the latest generation of personal computers

• We are likely to be in the same row as secret victim information
• We have a spatial accuracy of 1024 bytes
• It gets even better on multi-CPU servers

• For example, we can spy on keyboard inputs to Firefox

42



42



DRAM Covert Channel



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

Sender and receiverdecide on one bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Receiver mea-sures access timeto its address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Repeated ac-cess always haslow access times

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

copy

activate
Sender accessesits address

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sender accessesits address

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

On next accessof receiver, thereis a row miss

43



Attacks

Attack Primitive: Row miss
DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

. . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row bu�er

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

return

Receiver hashigh access time

43



How our demo really works

What is a covert communication?

• Two programs would like to communicate but are not allowed to do so
• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS

44



How our demo really works

What is a covert communication?
• Two programs would like to communicate

but are not allowed to do so
• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS

44



How our demo really works

What is a covert communication?
• Two programs would like to communicate but are not allowed to do so

• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS

44



How our demo really works

What is a covert communication?
• Two programs would like to communicate but are not allowed to do so
• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS

44



How our demo really works

What is a covert communication?
• Two programs would like to communicate but are not allowed to do so
• All “normal” channels are blocked or monitored

EXPLOIT

ALL THE SIDE CHANNELS
44



Scenario

We are “trapped” inside a VM without network hardware
• There is no communication between guest and host

• We want to get data out of the VM
• We cannot run binaries on the host system
• There are no known software bugs in either host, guest or virtualization

software

45



Scenario

We are “trapped” inside a VM without network hardware
• There is no communication between guest and host
• We want to get data out of the VM

• We cannot run binaries on the host system
• There are no known software bugs in either host, guest or virtualization

software

45



Scenario

We are “trapped” inside a VM without network hardware
• There is no communication between guest and host
• We want to get data out of the VM
• We cannot run binaries on the host system

• There are no known software bugs in either host, guest or virtualization
software

45



Scenario

We are “trapped” inside a VM without network hardware
• There is no communication between guest and host
• We want to get data out of the VM
• We cannot run binaries on the host system
• There are no known software bugs in either host, guest or virtualization

software

45



The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM
• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page

46



The solution

A covert channel implemented in JavaScript

• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM
• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page

46



The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)

• Sender inside the VM
• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page

46



The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM

• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page

46



The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM
• JavaScript running in the browser on the host

• We only have to trick the victim to visit our page

46



The solution

A covert channel implemented in JavaScript
• DRAM as side channel (main memory is “shared” between host and guest)
• Sender inside the VM
• JavaScript running in the browser on the host
• We only have to trick the victim to visit our page

46



The gory details - bits

• Use the row miss attack primitive

• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank
• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

• Use the row miss attack primitive
• Sender and receiver agree on a bank (can be hardcoded)

• Both sender inside VM and JavaScript in host select a di�erent row inside
this bank

• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

• Use the row miss attack primitive
• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank

• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

• Use the row miss attack primitive
• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank
• JavaScript measures access time for this row

• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

• Use the row miss attack primitive
• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank
• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict

• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

• Use the row miss attack primitive
• Sender and receiver agree on a bank (can be hardcoded)
• Both sender inside VM and JavaScript in host select a di�erent row inside

this bank
• JavaScript measures access time for this row
• Sender can transmit 0 by doing nothing and 1 by causing row conflict
• If measured timing was “fast” sender transmitted 0.

47



The gory details - bits

0 50 100 150 200 250 300 350
230

235

240

245

250

255

c
y
c
le

s

1/100 seconds

Figure 3: Multiple measurements per bit to have a reliable detection.

48



The gory details - bits

00 50 100 150 200 250 300 350
230

235

240

245

250

255

c
y
c
le

s

1/100 seconds

Figure 3: Multiple measurements per bit to have a reliable detection.

48



The gory details - Packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC Seq

• Communication is based on packets

• Packet starts with a 2-bit preamble
• Data integrity is checked by an error-detection code (EDC)
• Sequence bit indicates whether it is a retransmission or a new packet

49



The gory details - Packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC Seq

• Communication is based on packets
• Packet starts with a 2-bit preamble

• Data integrity is checked by an error-detection code (EDC)
• Sequence bit indicates whether it is a retransmission or a new packet

49



The gory details - Packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC Seq

• Communication is based on packets
• Packet starts with a 2-bit preamble
• Data integrity is checked by an error-detection code (EDC)

• Sequence bit indicates whether it is a retransmission or a new packet

49



The gory details - Packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC Seq

• Communication is based on packets
• Packet starts with a 2-bit preamble
• Data integrity is checked by an error-detection code (EDC)
• Sequence bit indicates whether it is a retransmission or a new packet

49



Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits
• Error correction
• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Results

• Transmission of approximately 11 bits/s

• Can be improved using

• Fewer retransmits
• Error correction
• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits

• Error correction
• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits
• Error correction

• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits
• Error correction
• Multithreading→ multiple banks in parallel

• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Results

• Transmission of approximately 11 bits/s

• Can be improved using
• Fewer retransmits
• Error correction
• Multithreading→ multiple banks in parallel
• What is possible in native code? 596 kbit/s cross CPU and cross VM

50



Rowhammer



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

activate

row bu�er

copy

• Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Rowhammer

DRAM bank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�errow bu�er

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2! • Capacitors leak→
refresh necessary

• cells leak faster upon
proximate accesses

• With enough proximate
access bits flips

51



Finding rows

The problem: Finding the victim row and the neighboring rows.

52



Finding rows

Solution 1: Spraying - We can fill memory with security relevant information and
hammer randomly

• Seaborn 2015
• Spraying PTE and NaCl sanity checking code
• Problem: Not everything can be sprayed.

53



Finding rows

Solution 2: Deduplication
• Razavi et al. 2016
• We can have the operating system / hypervisor copy relevant information to

a known location
• Problem: Deduplication is turned o� in ”serious” cloud and default o� in

most operating systems.

54



Finding rows

Solution 3: Locate data - DRAMA: We know the mapping function
• Bhattacharya and Mukhopadhyay 2016
• Cool: We can now target row hammer
• Problem: Physical addresses.

• /proc/PID/pagemap
• cite prefetch
• Other leaks: ex. large pages and cache set congruency.

55



Finding rows

Solution 3: Locate data - DRAMA: We know the mapping function
• Bhattacharya and Mukhopadhyay 2016
• Cool: We can now target row hammer
• Problem: Physical addresses.
• /proc/PID/pagemap
• cite prefetch
• Other leaks: ex. large pages and cache set congruency.

55



DDR4 Row hammer

Knowning the mapping funcion and physical address is what enabled bit flips in
DDR4

56



Finding rows

Solution 4: Locate data - DRAMA: Row hits and misses
• If we can invoke victim:
• We can use row miss primitive to locate the bank
• We can use row hits primitive to locate rows

• This is not perfect,
• but we can drastically improve accuracy

57



Finding rows

Solution 4: Locate data - DRAMA: Row hits and misses
• If we can invoke victim:
• We can use row miss primitive to locate the bank
• We can use row hits primitive to locate rows
• This is not perfect,
• but we can drastically improve accuracy

57



Conclusion



Black Hat Sound Bytes

Black Hat Sound Bytes.
• DRAM design is security relevant
• We can covertly exfiltrate information
• We can spy on other software
• We enable targeted row hammer attacks

58



Bibliography I

References

Bhattacharya, Sarani and Debdeep Mukhopadhyay (2016). “Curious case of Rowhammer: Flipping
Secret Exponent Bits using Timing Analysis”. In: Cryptology ePrint Archive, Report 2016/618.

Gruss, Daniel et al. (2016). “Rowhammer.js: A Remote Software-Induced Fault Attack in
JavaScript”. In: DIMVA.

Razavi, Kaveh et al. (2016). “Flip Feng Shui: Hammering a Needle in the Software Stack”. In:
Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC’16).

Seaborn, Mark (2015). Exploiting the DRAM rowhammer bug to gain kernel privileges.
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-

gain.html. Retrieved on June 26, 2015.

59

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


DRAMA: How your DRAM becomes a security problem

Michael Schwarz and Anders Fogh
November 4, 2016

60


	Introduction
	From code to capacitor
	Page tables
	Data caches
	The memory controller
	Reading from DRAM
	First attack: Reversing the CPU
	Spying through the DRAM
	DRAM Covert Channel
	Rowhammer
	Conclusion

