
Cascading Spy Sheets:
Exploiting the Complexity of Modern CSS

for Email and Browser Fingerprinting
Leon Trampert∗, Daniel Weber∗, Lukas Gerlach∗, Christian Rossow∗, Michael Schwarz∗

∗CISPA Helmholtz Center for Information Security
Email: {leon.trampert, daniel.weber, lukas.gerlach, rossow, michael.schwarz}@cispa.de

Abstract—In an attempt to combat user tracking, both privacy-
aware browsers (e.g., Tor) and email applications usually disable
JavaScript. This effectively closes a major angle for user fin-
gerprinting. However, recent findings hint at the potential for
privacy leakage through selected Cascading Style Sheets (CSS)
features. Nevertheless, the full fingerprinting potential of CSS
remains unknown, and it is unclear if attacks apply to more
restrictive settings such as email.

In this paper, we systematically investigate the modern dynamic
features of CSS and their applicability for script-less finger-
printing, bypassing many state-of-the-art mitigations. We present
three innovative techniques based on fuzzing and templating that
exploit nuances in CSS container queries, arithmetic functions,
and complex selectors. This allows us to infer detailed appli-
cation, OS, and hardware configurations at high accuracy. For
browsers, we can distinguish 97.95% of 1176 tested browser-OS
combinations. Our methods also apply to email applications—
as shown for 8 out of 21 tested web, desktop or mobile email
applications. This demonstrates that fingerprinting is possible in
the highly restrictive setting of HTML emails and expands the
scope of tracking beyond traditional web environments.

In response to these and potential future CSS-based tracking
capabilities, we propose two defense mechanisms that eliminate
the root causes of privacy leakage. For browsers, we pro-
pose to preload conditional resources, which eliminates feature-
dependent leakage. For the email setting, we design an email
proxy service that retains privacy and email integrity while
largely preserving feature compatibility. Our work provides new
insights and solutions to the ongoing privacy debate, highlighting
the importance of robust defenses against emerging tracking
methods.

I. INTRODUCTION

User tracking has played a crucial role in targeted adver-
tisements and the overall economy of the web. Cookies, which
are small text files that a website can store on a user’s device
to identify them uniquely, have been widely used for this pur-
pose [1], [2]. However, with increased awareness that tracking
infringes privacy, the use of such cookies has been gradually
restricted [3], e.g., by blocking third-party cookies [3], [4]
and legally requiring opt-in for certain cookies [3]. With the

deprecation of third-party cookies in Google Chrome [4],
the industry is shifting from tracking individual users to less
invasive alternatives that still enable targeted advertising, such
as Google’s Topics API [5].

Although browsers have made tracking more difficult, the
threat still exists. Browser fingerprinting [6], a thriving alter-
native to third-party cookies, can re-identify browsers and is
often equivalent to re-identifying a user [7]. This technique has
gained traction in commercial products [8] as an alternative
to traditional cookies. Libraries, such as FingerprintJS [9], are
utilized by numerous websites [8] to track visitors. JavaScript-
based approaches can access various client-specific properties.
Noteworthy properties include installed fonts [10], [11] and
plugins [12]–[14], rendering differences with emojis and geo-
metric primitives [15], [16], GPU capabilities [17], [18], screen
resolution, language, CPU model, system microarchitecture, or
available device memory [19]–[21]. These properties identify
browser instances uniquely and can be used to track users,
allowing browser fingerprinting [6].

Unfortunately, even disabling JavaScript, which is arguably
the most radical countermeasure, does not eliminate browser
fingerprinting. Lin et al. [22] anecdotally demonstrated that
the increasing complexity of CSS, the style sheet language
used for websites, can be leveraged for browser fingerprinting.
They derive stylistic fingerprints using CSS media queries
to learn the dimensions of an HTML element aligned to an
iframe, which indirectly infers characteristics of the client
environment. Such CSS-based fingerprinting is widely appli-
cable as—in contrast to JavaScript—browsers or extensions
do not provide means to disable CSS. However, as we show,
stylistic fingerprints are just the tip of the iceberg of CSS-based
fingerprinting. In fact, recent advances of the CSS standard
have introduced several—seemingly more limited—features
that come close to code execution by providing conditionals
and arithmetic operations, exposing undocumented leakage
signals.

In this paper, we thus aim to understand the risks of CSS fin-
gerprinting holistically, rather than focusing on individual CSS
features. We evaluate the identified privacy threats both in the
traditional web setting, and also introduce the novel concept of
email client fingerprinting. We systematically explore modern
CSS features and categorize them into three different avenues
for script-less fingerprinting. Our first technique uses CSS’s

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230238
www.ndss-symposium.org

new container query rule to measure a container’s width. By
combining font and element rendering with container sizes,
this technique can determine if a specific font is installed, as
well as identify OS-, browser-, and context-specific styles. The
second technique involves using dynamically-calculated size
expressions, including trigonometric functions. Depending on
the browser version, CPU architecture, and operating system,
these functions have slightly different outputs for specific
inputs. Finally, we offer a template-based method to identify
differences in the CSS-inferable properties of standard HTML
elements. The fingerprinting outcome of these techniques can
be obtained by selectively loading an external resource that is
observed by attackers through CSS selectors, without the need
for JavaScript code.

Our techniques rely on specific corner cases of mathe-
matical functions, font measurements, context-specific styles,
and functions. To discover these corner cases, we use a
combination of fuzzing and templating. We develop a fuzzer to
generate potential corner cases for our techniques and compare
the results across different systems. If at least one system
produces a different output, this corner case can be used to
uniquely identify that system and its user. With our com-
bined approaches, we can distinguish 1152 of 1176 (97.95%)
tested browser-OS combinations without using JavaScript.
Furthermore, we suggest a series of CSS-based fingerprinting
techniques that identify user-specific configurations, such as
the use of translation or browser extensions.

The variety of identified attacks underscores that CSS is
more capable of fingerprinting features than expected. Addi-
tionally, our fingerprinting methods require fewer assumptions
and yield higher accuracy than previous techniques. Our new
techniques do not rely on browser-specific HTML elements,
such as iframes [22], [23], and are currently the only viable
technique in a more restricted environment that prohibits
iframes. This observation introduces a new type of attack:
email client fingerprinting. In this threat model, attackers
attempt to link web visitors to email recipients or anonymous
email accounts. Additionally, the information gathered about
the recipient’s environment can be used to improve phishing
mails or targeted exploits [18]. To evaluate the threat of CSS-
based fingerprinting in email clients, we analyzed 21 native
and webmail clients. Our analysis reveals that even if email
clients implement mitigations against script-less fingerprinting,
they often use spot mitigations that only block previously
exploited features. Our techniques are effective in most email
clients, enabling attackers to identify email clients (i.e., users)
when victims read an email controlled by the attacker. Ad-
ditionally, we discovered a lack of isolation in one webmail
client, which allows for the extraction of all email subjects
using only CSS (assigned CVE-2024-24510).

The techniques presented in this paper are currently unmit-
igated by all state-of-the-art defenses. We thus propose two
fundamental defenses to target the problem at its root while
retaining full compatibility—one for browsers, one for email
clients. For browsers, we preload all conditional resources
referenced in CSS styles. This eliminates leakage signals from

conditional requests via unconditional preloads, preventing
attackers from learning the fingerprinting properties. We evalu-
ate this defense on the Tranco Top 200 websites [24], showing
an average increase in network traffic by 30%. For email
clients, we present a mitigation that can be deployed as an
email proxy service to protect against leakage through HTML
emails. The proxy fetches all remote resources and inlines
them, guaranteeing the email’s integrity and the recipient’s
privacy. Additionally, the proxy converts top-level stylesheets
to style attributes, the most supported method for defining
styles in HTML emails. This approach ensures integrity among
different clients while confining the email’s style to its own
context.
Contributions. We summarize our contributions as follows.
• We systematically explore modern CSS features and

present three novel CSS-based fingerprinting techniques
based on “@” rules, arithmetic functions, and container
queries. We show how these CSS-based fingerprinting
primitives outperform prior anecdotal techniques regarding
versatility, accuracy, and applicability.

• We investigate new fingerprinting use cases in environ-
ments where attackers are unable to use certain HTML
elements, such as iframes. In particular, we showcase CSS-
based fingerprinting in web and standalone email clients.

• We propose two fundamental defenses that convert condi-
tional resource loading into unconditional ones. Although
these defenses introduce a considerable overhead, they
remove the root cause for all previously known, new, and
potential future CSS-based fingerprinting techniques.

Responsible Disclosure. We reported our browser-
fingerprinting findings to Tor and Brave, which consider
fingerprinting a threat. The Tor project acknowledged our
techniques and discusses possibilities for effective mitigations.
We reported the missing email isolation in the Alinto SOGo
client (CVE-2024-24510). Alinto applied a hotfix in their
nightly version and is investigating principled mitigations. In
addition, we are in the process of reporting the bypass on the
filtering of inline styles to Mozilla and the ability to execute
JavaScript inside of remote iframes loaded by emails using
Samsung Email to Samsung.
Availability. All experiments and proof-of-concepts are avail-
able at https://github.com/cispa/cascading-spy-sheets.

II. BACKGROUND

In this section, we introduce the background for the paper.

A. Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is a stylesheet language
used on the web in addition to Hypertext Markup Language
(HTML) [25]. CSS annotates the style in which the HTML
content is displayed. On a high level, a web page is processed
as follows: The HTML content is fetched, the HTML is parsed,
and further resources such as CSS are loaded. The CSS is
parsed, and the contained style information is applied when
rendering a web page. CSS is crucial for the modern web as
it plays a fundamental role in responsive design, i.e., allowing

2

a website to adapt to the user agent. For example, a developer
can use CSS to fit content to the screen resolution [26]. Due
to its flexibility, CSS is used beyond the web in other user
agents, such as email clients or ebook readers [25].

While every modern browser supports the CSS standard,
the exact set of supported features differs per browser [25].
Furthermore, the CSS standard is continuously developing
as the web keeps evolving. Developers of user agents, e.g.,
browser vendors, rapidly adopt many of these new changes.
The frequently changing landscape of CSS features makes it
hard to reason about the privacy implications of these features.

B. Tracking Users on the Web

For purposes such as targeted advertisements, various enti-
ties are interested in tracking a user’s browsing behavior. Until
recently, tracking parties mainly leveraged third-party cookies
to collect user information. As of January 2024, Google is
implementing a new set of features called Tracking Protection,
part of their Privacy Sandbox initiative [4], [27]. With the
adoption of tracking protection, third-party cookies are no
longer a reliable fingerprinting tool.

Hence, browser fingerprinting, i.e., deanonymizing a user’s
browser based on its characteristics and configuration, be-
comes increasingly important. Browser fingerprinting is
typically performed using JavaScript due to its feature-
richness [6], [15]. Consequently, users wanting to minimize
fingerprinting disable JavaScript. An example is the Tor
browser that ships with the NoScript extension [28], [29].

Recent research has shown that browser fingerprinting is
not limited to JavaScript; CSS also allows fingerprinting
users [22], [30]. As a response, Tor has reduced the precision
of CSS features related to the viewport, i.e., the screen
dimensions [31]. Additionally, the Tor and Brave browsers
mitigate font fingerprinting, a technique where websites track
users based on the fonts installed on their system [29], [32].
The Tor browser uses an allowlisting-based approach, which
features a fixed set of fonts available on all systems, effectively
making every user’s browser appear identical regarding font
availability [29]. The Brave browser randomizes the set of
reported fonts for each website [32]. This method creates
inconsistencies in the font data available to trackers, making
it challenging to build a consistent fingerprint. Additionally,
the NoScript extension can block iframes, further hardening
browsers against CSS-based fingerprinting [28]. Hence, miti-
gations exist for JavaScript-based fingerprinting and the most
potent CSS-based fingerprinting [22].

C. Tracking Users from Their Email Clients

Tracking users in email clients is fundamentally different
from fingerprinting on the web. The content of email clients is
highly restrictive, e.g., JavaScript is disallowed, subdocuments
are often disallowed, and generally, dynamic content is more
restricted. Nevertheless, emails support the embedding of
HTML and CSS, enabling so-called tracking pixels [33]. A
tracking pixel is a transparent small image embedded in the
email. The tracking party logs all metadata on the server side

when the client fetches the tracking image. This metadata,
which can be used to identify the user opening the email,
includes the user agent, the IP address, the timestamp, and
other headers that may reveal sensitive information (e.g.,
Referer) [33]. As a countermeasure to protect users’ pri-
vacy, email clients may choose to fetch resources via a proxy
server [33]. This way, instead of leaking their own information
to the tracking party’s server, it remains hidden behind a proxy
server. More drastic countermeasures are disallowing external
content and stripping tracking pixels from emails (e.g., the
DuckDuckGo Email Protection) [34].

III. SYSTEMATIC ANALYSIS OF CSS-BASED
FINGERPRINTING

In this section, we systematically analyze CSS for its
use in script-less fingerprinting. We manually survey modern
CSS features for features that come close to code execu-
tion, specifically conditionals and arithmetic operations. We
investigate CSS at-rules [35] that change the behavior of the
CSS engine (Section III-B). We analyze dynamic functions
in CSS (Section III-C) and CSS properties influenced by
the environment (Section III-D) via fuzzing and template
attacks [18], respectively. We also analyze different exfiltration
channels that attacks can use to gather the leaked information
(Section III-E).

A. Threat Model
CSS-based fingerprinting is especially relevant in the con-

text of existing anti-fingerprinting mitigations that mainly
defend against client-side scripting [28], [29]. We assume the
most restrictive mitigation, i.e., no JavaScript available. We
further assume the tracking party controls a web server that
is reachable from the victim user agent. For most attacks, we
assume that the tracking party controls the HTML document
object model (DOM), including the stylesheets. While this is a
reasonable assumption for fingerprinting in the browser, other
user agents are more restrictive. Thus, we also discuss attacks
that do not always require full DOM access on more restricted
user agents, e.g., email clients or browsers with additional
protections, such as blocking web fonts.

B. CSS At-Rules
We systematically analyze all 17 at-rules from the CSS stan-

dard [35]. CSS at-rules are meta statements that control how
CSS is interpreted. Such at-rules can, e.g., be a @charset
statement defining the encoding of a CSS document or an
@import statement that is used to include external style
sheets. We group CSS at-rules into different categories based
on their semantics: environment, browser, and style (Table I).
Especially interesting for fingerprinting are the environment
and browser categories. Previous work only evaluated two of
these at-rules, namely the @media rule and the @font-face
rule [22], [30]. In addition, they used @supports to differ-
entiate a fixed selection of browsers [22].

We manually investigate all rules for their fingerprinting
potential. We identify 1 previously unexplored rule with fin-
gerprinting potential: @container allows to query various

3

TABLE I: We divide all CSS at-rules into 3 categories based
on their semantics. Bold rules are exploited in this paper, italic
rules are used in previous work.

Env. @media, @scope, @page, @container,
@font-face

Browser @supports, @import

Style @starting-style, @keyframes, @counter-
style, @font-feature-values, @font-
palette-values, @property, @layer,
@charset, @namespace, @color-profile

dimensions of elements. Additionally, we identify 2 rules with
the potential to leak information in the more restricted setting
of emails: @import to include additional, potentially non-
sanitized CSS, and @page, which triggers when printing a
document (e.g., a web page or email). Section IV presents our
fingerprinting techniques based on these previously unexplored
at-rules. Furthermore, we analyse the effectiveness of using
@supports to differentiate major browser releases.

C. CSS Functions

We systematically analyze CSS functions, allowing dynamic
calculation of values. CSS functions can be used to evaluate
predefined statements, e.g., calculations, whose results can be
the value of a CSS property. These functions can, e.g., be used
to fit content to different screen sizes dynamically. The MDN
Web docs currently list 103 different value functions that are
grouped into 12 separate categories [36].

In line with CSS at-rules, we do not see any fingerprint
possibility with purely style-targeted functions. These func-
tions account for 9 out of the 12 function categories. Here,
we are mainly limited due to a lack of CSS-based exfiltration
channels that can amplify implementation differences to other
styles or even network requests. We see clear fingerprinting
potential in the remaining 3 categories, i.e., mathematical, im-
age, and reference functions. For the reference functions, env
allows direct access to specific environment properties, leaking
information about, e.g., the device’s display shape. For mathe-
matical functions, the result of complex arithmetic expressions
depends on the implementation details of the browser, which
differ across versions, operating systems, and CPU architec-
tures. Section V-A details our fuzzing-based approach for
finding inputs to these functions that enable fingerprinting. In
the image function category, the image-set function may
take multiple arguments with attached constraints on supported
formats or the viewport. The browser only loads and renders
the first image where the constraint is fulfilled, thus leaking
information via loading remote images.

D. CSS Properties

We systematically analyze the default values of CSS prop-
erties to detect values leaking information from the environ-
ment. CSS properties are used to define the style of HTML
elements. An example of such a property is color: red,

which changes the text color of the HTML element it is
assigned to. While a set of standardized properties that all
browsers support exists, there are additional browser-specific
extensions such as -moz-* for Firefox and -webkit-*
for WebKit-based browsers [30]. For this analysis, we use a
template attack [18] to determine the fingerprinting potential
of CSS properties. We reveal differences induced by the
environment by automatically querying all CSS properties of
supported HTML elements in the same browser running in
different environments. Section VI details this approach and
the found properties that have the potential for fingerprinting.
We categorize such properties based on the type of value they
encode, e.g., dimension or color. We show that properties that
influence dimensions can be leaked with existing exfiltration
techniques [22] and our new exfiltration techniques described
in Section VI. We discuss that the CSS standard does not
prevent exfiltrating other properties, which should be consid-
ered when browser vendors further implement features of the
current CSS standard.

E. Exfiltration Phase

After leaking fingerprint features, they have to be transmit-
ted to the attacker via network requests. There are two options
to encode features into network requests. Either the network
request is conditional, i.e., the remote resource is only fetched
if a specific condition is met, or parts of the URL are feature
dependent. As current browser implementations do not allow
dynamically generated URLs in CSS, only the first option is
possible. CSS specifies 4 variants for such conditional HTTP
requests.
Conditional (Group) Rules. Conditional group rules, such
as @media, @supports, or @import, allow for exfiltration
if their condition depends on a feature. If the styles within the
group contain URLs, these URLs are fetched only if the rule
triggers. As in previous work [22], [30], we rely on such rules,
which are the most generic. Listing 1 shows an example of
how such a rule-based conditional HTTP request is capable of
detecting the installation of Microsoft’s Office Product Suite.
It leverages the font Leelawadee, which requires a license that
allows the distribution and is most commonly installed with
this product suite.
Conditional Directives. The image-set() directive
presents the user agent with a set of resources and correspond-
ing selection criteria, e.g., a specific image format. The user
agent fetches the resource that best matches the criteria, e.g.,
the supported image format with the highest resolution.
Multiple Source Specification. CSS attributes, e.g., the
source of @font-face, can allow multiple URLs for re-
sources. Upon successfully loading a resource, other fallback
resources are ignored. Previous work [22], [30] used this
behavior for font fingerprinting. We are unaware of other such
attributes, making this exfiltration channel unique for fonts.
CSS Selectors. CSS selectors can become conditional if the
DOM changes, e.g., due to an ad blocker. Previous work [22]
exploited this behavior to detect the presence of an ad blocker

4

1 #container {
2 container-type: inline-size;
3 font-family: 'Leelawadee';
4 font-style: normal;
5 font-weight: 100;
6 font-size: 11px;
7 width: 1cap;
8 }
9

10 @container (width > 7.5px) {
11 * {
12 background-image: url(/office-yes);
13 }
14 }
15 @container (width < 7.5px) {
16 * {
17 background-image: url(/office-no);
18 }
19 }

Listing 1: The above CSS statement determines whether the
Microsoft Office Product Suite is installed on a system by
checking for the presence of the Leelawadee font.

removing entire HTML elements. Consequently, the remote
request of the CSS selector was not triggered.

IV. LEAKAGE VIA CSS RULES

In this section, we introduce novel CSS fingerprinting
techniques based on previously unexplored at-rules. In Sec-
tion IV-A, we show that the recently added @container rule
is well-suited for browser fingerprinting. Container queries
can replace all state-of-the-art techniques for fingerprinting,
have fewer requirements, are more challenging to mitigate,
and are applicable in more scenarios. Section IV-B shows that
@supports efficiently distinguishes browsers and browser
versions, and @import and @print have privacy implica-
tions when used in emails.

A. Container Queries

Container queries (@container rules) introduce the con-
ditional application of styles depending on the computed size
of their parent container (e.g., width and height) [25], [37].
Listing 2 shows an example of a container query combining
a style with a size query. Modifications to the properties of
the container propagate to its child elements via the container
query. A container query can be a boolean combination of
multiple container conditions. A container condition may
query a size feature of the container or perform a style query
to query the computed style of the container. Currently, style
queries are only implemented for the <custom-ident>
CSS data type [25]. The W3C working draft does, however,
not mention this restriction [37].

We introduce a novel technique that leverages a comparison
of the width (or height) of a container specified using a relative
unit and a baseline value specified in an absolute unit (px).
The technique allows us to infer the absolute size of a relative
unit, e.g., lh (relative to line-height), or vw (relative
to the viewport width). Using multiple container queries,
boolean combinations, or nesting, we find the exact absolute

1 <style>
2 #container {
3 container-type: inline-size;
4 width: 20vw;
5 --theme: dark;
6 }
7 @container style(--theme: dark)
8 and (width > 100px) {
9 p {

10 background-color: black;
11 color: white;
12 }
13 }
14 </style>
15 <div id="container">
16 <p>Lorem!</p>
17 </div>

Listing 2: This example applies conditional styling to the <p>
tag, if the container has a property called --theme which is
set to dark and the computed width of the container is greater
than 100px.

0
ch

X ex ic ABC cap

Fig. 1: The CSS length units ch, ex, ic, and cap are
specified relative to the dimensions of glyphs of the active
font.

value. Relative units carry information about the rendering
environment, e.g., font availability (see Section IV-A1), user
configuration (see Section IV-A2), or the viewport width (see
Section IV-A3). In addition, as showcased by Lin et al.
[22], the width of HTML elements also presents a great
fingerprinting surface (see Section IV-A4).

1) Font Detection: We can infer if a particular font is
available on a system using one or multiple font-relative units.
As sizes of characters differ between glyphs and fonts, they
reliably identify a font. As illustrated in Figure 1, the units
ch, ex, and ic refer to concrete sizes of individual glyphs,
while cap refers to the height of capital letters of a font [25],
[38]. Here, ch represents the advance width of the glyph that
represents the character ‘0’ of the current font. Similarly, for
international fonts, the ic unit represents the height of ‘ ’
(CJK water ideograph, U+6C34). The unit ex is defined as
the height of the glyph representing the character ‘X’ of a
font. Similarly, the unit cap is the approximate height of a
capital Latin letter.

To test if a specific font is installed and available to the
browser, we proceed as follows. We create two containers
with the same width of this unit type. We assign the font
we want to test for to only one of the containers. We infer the
actual size of the container by comparing it to an absolute unit,
such as px. Directly comparing the width of the container is
not possible. By comparing the measurements of the container
with the default fallback font applied to the container with the
font we want to test for, we can observe if a font is available.

5

2) Default Property Values: The unit lh is defined as the
current value of the line-height property. While this value
is independent of the viewport, each major browser ships with
different default line heights. For example, the default value is
18 in Google Chrome and 19 in Firefox. In contrast, the default
font size in all major desktop browsers is 16. However, this
value is customizable and may uniquely identify users.

3) Replicating Media Queries: The @media at-rule, as
used in previous work [22], [30], can query information about
the viewport. These queries include the width, height, aspect
ratio, and orientation. Such viewport-related media queries
can also be replicated using container queries, e.g., if media
queries are restricted.

We apply a relative viewport width or height, e.g., vh or vw,
to the container. They are each defined as one percent of the
width or height of the viewport [38]. Next, we perform a con-
tainer query that compares the computed width or height with
a value specified in an absolute unit. This query effectively
leaks the same information that standard media queries can
gather. Combined with the units vmin and vmax, defined as
the minimum or maximum of vh and vw, we can also identify
the aspect ratio [38].

4) Measuring Element Dimensions: In addition to the infor-
mation leaked by dimensional units, we can directly measure
the dimensions of HTML elements. For this, we wrap a
container (<div>) and the element we want to measure the
dimensions of in a <div> element called the wrapper. We let
the wrapper scale to the width of its content using width:
fit-content. By default, the container scales to the full
width of its parent, which is the same width as the element
we want to measure. We can leverage a container query to infer
the exact size of the element. This technique is visualized in
Figure 2. Most browsers adapt their default styles for certain
elements (e.g., the <button> element) to fit the operating
system [22]. In addition, the language setting of the browser
also directly influences the width of some elements, such as
the <input> element with the type file, which allows
users to choose files from their device storage. The width
of elements depends on the advance width of the glyphs the
element contains and, therefore, the font used for rendering.
Note that this technique can also be used for general font
fingerprinting. Our approach is similar to Lin et al. [22], which
leverages iframes and media queries to achieve the same.

Building on the ability to measure the width of HTML
elements, we can also detect the use of translation tools, and
their respective target languages. Translation tools built into
the browser, such as Google Translate, directly modify the
content of the DOM. Those modifications also influence the
width of the containing elements since different glyphs are
used to render the element. Attackers can provide texts in
different languages and detect which are translated. A single
different glyph can be leveraged to detect the exact translation.
Detecting whether translation happens, or even knowing the
target language, provides hints about the languages a user
understands and prefers.

<div id="wrapper">

<button></button>

fixed width

fit fit

<div id="cont"></div>

expands

Fig. 2: We can measure the width of an HTML element, e.g.,
a <button>, by wrapping the element and a container in
another element. We let the wrapper scale to the width of its
children. The width is now defined by the element we want
to measure. By default, the <div> container element scales
to the full width of its parent, which allows us to measure the
width of our target by measuring the width of the container.

B. Other Rules

We identify additional rules for supporting fingerprinting.
Support Queries. Support queries using @supports allow
querying if the current browser enables a CSS feature. By
probing which CSS features are supported, we can form fin-
gerprints that uniquely identify browser and operating system
configurations in many cases.
External CSS. The @import rule allows conditional loading
of additional CSS stylesheets. While @import does not
directly leak information, it is useful in two scenarios. First, as
discussed in Section III-E, this rule can be used in the exfiltra-
tion phase. Second, we show that this rule is easily overlooked
when sanitizing CSS, e.g., in email clients. Any sanitization
must be applied recursively to imported stylesheets, which is,
e.g., not done in the SOGo email client (Section VIII-C2).
Print Detection. The @page rule triggers when a page is
printed, similar to the @media print rule. The rule does
not provide information about the environment but a user’s
action. Additionally, such a rule can stealthily change the
printed email’s content or prevent printing the email entirely by
hiding the content. Note that currently, only @media print
provides advanced capabilities, and the support for @page is
still rudimentary, only supporting margins.

C. Evaluation
In this section, we evaluate the at-rule-based techniques for

fingerprinting. Our evaluation is performed on seven major
consumer operating systems: Microsoft Windows 10 and 11,
macOS 14 Sonoma, Ubuntu 22.04 LTS, ChromeOS 120,
Android 14 and iOS 17.3. We include the latest versions of
Google Chrome, Microsoft Edge, Opera, Mozilla Firefox, and
Apple Safari, covering the vast majority of the market share
[39]. Further, we also include three privacy-focussed browsers,
Brave, Ghostery, and the Tor browser, in their respective
latest versions. A complete table of the browser versions
can be found in Table IV in the appendix. Our evaluation
contains 1176 pairs of OS-browser combinations. We perform
the evaluation on fresh installations, which constitutes the
worst-case scenario for the fingerprinting capabilities while
preserving the ability to identify systemic differences.

6

1) Container Queries (Font Detection): We first evaluate
our container-query-based font fingerprinting approach using
the list of typefaces included with Microsoft Windows 11 [40],
the list of typefaces included with Apple Mac OS X 10.0
through macOS 10.14 [41], the allowlist of the Tor browser
on Linux [29], and the list of fonts used by FingerprintJS [42],
also used by prior work [22]. In addition, we also check the
fonts behind the generic font families (e.g., system-ui).
We exclude the Brave browser, as it follows a randomization-
based approach to mitigate font fingerprinting, which would
induce false positives in our evaluation. This experiment
design leaves us with 861 OS-browser combination pairs. Out
of these, we can distinguish 831 (96.5%) pairs. Our font
fingerprinting approach can generally distinguish all operating
systems, except when using the Tor browser, where we cannot
detect differences between Windows 10 and 11. In addition, we
can reliably differentiate the major browser engines. We did
not identify differences between Chromium-based browsers,
except on ChromeOS and macOS. On ChromeOS, we can
distinguish Google Chrome and Opera, the only two available
Chromium-based browsers for the system in our evaluation.
On macOS, Opera modifies the default font of the generic
family system-ui, allowing us to differentiate Opera from
Google Chrome and Microsoft Edge. We can differentiate
Mozilla Firefox-based browsers, except on macOS, where we
cannot detect differences between Firefox and Ghostery. Note
that we cannot detect differences between the fonts on iOS
since the browsers are all WebKit-based.
Bypassing Countermeasures. The Tor browser imple-
ments an allowlist-based approach to mitigate font finger-
printing [29]. However, our container-query-based technique
identifies a notable exception in Tor’s mitigation strategy.
Specifically, the browser does not adhere to its font allowlist
for the font family “Gill Sans”, a licensed font distributed with
Microsoft Office [43]. This oversight allows the detection of
Microsoft Office on a system, even on the highest security
level of the browser. The Tor project acknowledged the issue,
indicating an awareness of the exception. However, they
(wrongly so) expected this to be mitigated by the other font
fingerprinting mitigations (i.e., disabling scripting and loading
Web fonts). The behavior seems to stem from a distinct code
path for “Gill Sans” in Mozilla Firefox, potentially linked to
Bug 551313 [44]. As a result of our report, we are working
with the project maintainers to find a solution.

2) Support Queries: We analyze the uniqueness of the fea-
tures browsers and their major releases provide by leveraging
@supports rules. We rely on CSS feature-compatibility data
provided by Mozilla via their MDN Web Docs [25], [45]. The
dataset features the 6 major desktop browsers: Chrome, Edge,
Firefox, Opera, Safari, and Internet Explorer. In addition,
it features the 5 major mobile browsers: Chrome Android,
Firefox Android, Opera Android, Safari iOS, and Samsung
Internet. Since Safari on iOS is also used as a rendering engine
for the WebView component, the dataset also features the
Android equivalent WebView Android. For these 12 browsers,
the dataset records 922 different major releases. Out of these,

702 (76.1%) releases are unique in the CSS features they
support, which attackers can fingerprint using @supports
rules.

Looking at the major three desktop browsers (i.e., Chrome,
Firefox, Safari) and their latest 10 releases recorded in the
dataset, we find that 16 out of the 30 releases are unique
in their feature set. There are no overlaps between different
browser engines. For browser versions, we only find overlaps
of size 2, except for Firefox, where Firefox 121 to 124 have
the same features. Note that this may also stem from an
incomplete dataset, as the current major release of Firefox
is 122. As such, the CSS rule @supports can distinguish
browser engines and, in most cases, their major releases.

In addition, 39 CSS features are first deployed behind flags
that users must explicitly enable. On the other hand, features
may also be turned off. The modification of these feature
flags can likewise be inferred via CSS. As such, the browser-
supported features may identify a user who has customized
their browser via the feature flags.

3) Translation Identification: We evaluate the width-
measurement-based translation identification technique using
the built-in translation tool of Google Chrome that leverages
the Google Translate service. For this, we translate the sen-
tence “I can understand the words used by my grandfather
and like coffee.” into 131 languages supported by the Google
Translate API. We find that the rendered width of the trans-
lation is unique for 127 languages and can thus be accurately
distinguished using our container-based width measurement
technique. The only exceptions are two language pairs, where
the width of the translation is the same: Simplified Chinese
and Traditional Chinese, and Filipino and Tagalog. For the
first pair, all fonts are monospaced and only the visual of a
character differs, never the amount of characters. The second
is Filipino and Tagalog, which the API does not seem to
differentiate. Also note that Filipino is the standardized form
of Tagalog.

V. LEAKAGE VIA CSS FUNCTIONS

In this section, we introduce a novel source of script-
less leakage based on CSS functions. These functions allow
dynamic calculation of property values based on environment
properties, such as the viewport size. Based on our systematic
analysis (cf. Section III), we focus on two of these functions,
calc and env. Section V-A shows differences in the results
of calc functions between browsers, operating systems, and
CPUs. Section V-B shows that the environment variables
accessible using env provide information about the used
device. As an exfiltration channel, we use container queries to
query the width of a container that was previously calculated
using a calc() or env() expression. These functions can
also be used in media queries as an alternative exfiltration
channel.

A. CSS calc() Expressions

CSS allows mathematical expressions and functions to dy-
namically compute the value of properties using the calc()

7

function [38]. As an example, it can be used to responsively
calculate an object’s width with respect to its parent’s width:
calc(100%/3 - 2*1em). Components of a calc expres-
sion may be literal values (e.g., 5px or 123), mathematical
functions (e.g., sin()), or other expressions that evaluate to
valid argument types. Per standard, user agents must support
expressions of at least 20 terms. The expressions are typed and
may be used with and as numeric values of most numeric data
types (e.g., <length> units). The standard mandates type
checks to be conducted during sub-expression evaluation [38].

The computed value is clamped to the range depending on
the target context of the computation. Note that these ranges
are only partially standardized. For example, the width
property may not accept negative values [38]. However, it
may accept fractional values of the unit px. Here, the stan-
dard does not mandate the number of fractions that must
be representable. We found that Chromium- and WebKit-
based browsers allow representable values for the unit px that
are multiples of 1

64 . Firefox only supports 61 representable
numbers in the range [0, 1] that do not share a common factor.
In addition, the representable values are only in the range
[0, 33554428] for Chromium-based browsers and [0, 8947841]
for Firefox. These implementation-specific limitations high-
light that calc() expressions can be a source for fingerprint-
ing. Besides these details, there are also differences caused
by implementation differences in the browser and third-party
math libraries.
Finding Differences. We employ a differential grammar-
based fuzzing approach to generate and test expressions to
find implementation-specific differences when evaluating com-
plex expressions. Our fuzzer searches for differing results
and automatically explores the limitations of the mechanisms
that implement parsing, type checking, and evaluation of the
expressions by automatically generating test cases that adhere
to the grammar specified in the CSS standard. It is entirely
implemented on the client side, where we directly evaluate
the expressions to retrieve the results.

Our fuzzer generates expressions that include arithmetic
operations (i.e., +, -, *, /), function calls supported by all
major browsers, and nested calc() expressions. Currently,
only trigonometric functions (e.g., sin, asin) are widely
supported, with additional functions (e.g., abs) [38] described
in the standard but not yet universally implemented [45]. The
depth of generated expressions can be controlled by config-
uration parameters, allowing for targeted testing of specific
limitations. Each test case is tested directly on the DOM by
creating a <div> element and applying a style that features
the width set as the expression. If the attacker-measurable
width differs between browsers or operating systems, the
underlying expression can be used as a fingerprinting channel.

B. CSS env() Function

The env() function, as defined in the CSS Environment
Variables Module Level 1 draft [46], allows using predefined
environment variables in CSS functions. The draft defines
two types of environment variables: safe-area-inset-*

and viewport-segment-*. The former defines the inset
required on the four sides to create a rectangular display
area. For example, notched displays require special care when
placing content, as the notch may obscure parts of the inter-
face. Similarly, the latter is used to define the position and
dimensions of logically separate regions of the viewport. For
example, this is used with folding devices where the hinge
creates two separate display areas. Since these values depend
on hardware features, they provide an additional fingerprinting
vector to differentiate (particularly mobile) devices.

C. Evaluation

In this section, we evaluate the leakage of the calc and
env functions using the same targets as in Section IV-C.

1) Mathematical Differences: We evaluate our fuzzing ap-
proach for the calc by creating 10 000 expressions us-
ing the same random seed and collecting their results. We
then leverage the collected data to find differences between
browsers’ results. These expressions can directly be combined
with container queries to generate test cases that differentiate
browsers. Concretely, our expression reveals differences in
1116 OS-browser combination pairs (94.9%). We can always
distinguish browser engines based on the results of their func-
tions (e.g., Firefox Gecko and Chromium Blink). In addition,
the implementation of browser engines changes frequently,
allowing us to distinguish major releases. For example, the 10
recent major releases of Mozilla Firefox feature four different
behaviors. Most importantly, we can differentiate release 115
(extended support), used in the Tor browser, and the two
most recent releases, 121 and 122. We can also differentiate
Opera from the other Chromium-based browsers, as the most
recent release, 106, still uses Chromium 120, while the others
have already updated to Chromium 121. Further, we can also
generally distinguish operating systems. The only exceptions
are Apple Safari on Apple Silicon, which behaves the same
as the WebKit engine on iOS, and Windows 10 and 11, where
we can only distinguish 36 of the 49 browser combinations
(73.4%).
Distinguishing Architectures. The calc()-expression-
based technique can also differentiate instruction set archi-
tectures (ISAs). For example, we can differentiate Microsoft
Edge on Windows 11 on ARM and x86-64. Furthermore, we
can distinguish between a browser’s 32-bit and 64-bit versions,
even for the Tor browser on Windows 11. These are the first
architectural differences observable from CSS only.

2) Screen Geometry: We evaluate the
safe-area-inset-* environment variables for
fingerprinting on all 5 most recent iPhone generations
(i.e., iPhone X up to iPhone 15). As of 2023, Apple’s iPhones
account for nearly one quarter of the global smartphone
market share [47]. We observe differences in the values
of the variables when the devices are in landscape mode,
which is explained by the devices’ notch not obscuring
any content when the site is initially loaded. Here, we find
3 clusters among the values of the 5 devices when using
Safari. The iPhone X and the iPhone 15 are unique, while

8

the iPhones 12-14 appear the same concerning the values
of the variables. Interestingly, Google’s Chrome, which on
iOS also uses the WebKit engine, presents two clusters. The
first cluster is again the iPhone X, where the values are the
same as on Safari. All 4 remaining phones are in the second
cluster, distinct from any value combinations observed using
Safari. As such, this feature also allows differentiating mobile
browsers. These findings align with the reported viewport
sizes when in landscape mode.

VI. LEAKAGE VIA CSS PROPERTIES

In this section, we introduce a template-attack-based ap-
proach to detect CSS properties that leak values from the
environment. The central intuition of this approach is that
operating systems, browser extensions, and user settings in-
fluence CSS properties accessible to websites. We show that
our automated approach finds orders of magnitude more
leaking properties than previous work [22]. The evaluation is
performed in the same fashion as described in Section IV-C.
As such, we detect any influences the default configuration
of the OS or the browser has on the base styles of HTML
elements. Further, we detect browser extensions that inject
stylesheets in the context of a site controlled by a tracking
party.

A. Finding Environment Differences

In the following, we describe our template-attack-based
approach to detect CSS properties that differ between en-
vironments. We employ an HTML document containing all
elements described in the HTML5 standard. The default styles
of all elements in one environment, e.g., Chrome on Windows
10, are then compared against a different environment, e.g.,
Firefox on macOS 14. All detectable differences can automat-
ically be encoded into their corresponding generic exfiltration
channel. For example, we can infer the width property of
an element by first making the element a container and then
using a container query that depends on the container’s width.

Technically, we frame the outer HTML document to a
fixed size of 200x200 to eliminate direct influences of the
viewport dimensions. We then use JavaScript to collect the
computed styles of every HTML element in the document via
getComputedStyle. Note that JavaScript is not necessary
for fingerprint generation and is only used for the initial data
collection. We collect styles for every HTML element together
with its XPath, allowing the detection of stylistic differences
induced by element nesting.

As of the writing of this paper, container queries are still
limited to querying dimensions (e.g., width). We thus only
consider those CSS properties that an attacker can actually
exfiltrate. In the future, container queries will likely be fully
implemented as described in the @container standard.
Consequently, they could become a general way to detect ar-
bitrary differences in an element’s representation. We include
a hypothetical what-if analysis to show how expanding the set
of available exfiltration channels would increase fingerprints.

In line with prior work on extension fingerprinting [14], we
propose a novel CSS-based approach to detect modifications of
the DOM and added styles. This is commonly done by browser
extensions that inject stylesheets into the context of a site.
As such, we can detect and identify the presence of browser
extensions that modify the DOM. We can directly leverage the
framework introduced by Laperdrix et al. , which identifies
extensions that inject stylesheets and pinpoints the injected
styles [14]. In the following, we can again filter the injected
stylesheets for styles where a CSS-based exfiltration channel
exists and automatically combine the trigger element generated
by the framework by Laperdrix et al. with the corresponding
exfiltration channel.

B. Evaluation

In this section, we evaluate the differences in the computed
styles of HTML elements and the ability to detect browser
extensions using only HTML and CSS. For the first part,
we use the same set of browsers and operating systems as
described in Section IV-C.

1) Leaking Properties: As of the writing of this paper,
container queries are limited to the dimensions as described in
Section IV-A. Thus, our evaluation focuses on the properties
that can be inferred using our container-query-based approach.
This includes all element-dimension-related properties (e.g.,
width) as well as the line height and the font family and
size, as they directly influence length units, which we can
query as established in Section IV-A. Note that the evaluation
is conducted in an iframe with a fixed viewport to eliminate
viewport-induced differences.

We can differentiate 97% of all browser-OS combination
pairs in our investigation. Generally, our templating framework
finds differences between all operating systems and browser
engines. Here, the only exception is Google Chrome on
Windows 10, which cannot be differentiated from Google
Chrome and the Brave browser on Windows 11. In addition,
we can usually detect differences within the browsers that
use the same engine on the same OS. Notable exceptions
are the Brave and the Ghostery browsers, which can only
be distinguished from Chrome and Firefox, respectively, on
our ChromeOS device. Further, we also cannot distinguish
Chrome, Edge, and Brave on Ubuntu; Chrome, Edge, Brave,
and Opera on macOS; Chrome, Brave, and Opera on Android.

Interestingly, we can identify Opera on iOS, although all
browsers on iOS use the same engine. This is because Opera
injects stylesheets that slightly customize the styles of HTML
elements. In particular, Opera slightly enlarges some form
elements. All other iOS browsers are not distinguishable via
their default styles. In the hypothetical scenario of an exfiltra-
tion channel for every CSS property, we can differentiate 11
additional pairs, increasing our accuracy to 98%.

2) Extension Detection: We also test how CSS properties
can be used to detect DOM modifications by browser exten-
sions. We test 10 Chrome extensions: 9 extensions that serve
as examples in the artifacts of prior work [14] and the popular

9

NoScript extension, which is relevant to the CSS fingerprinting
threat model.

We can construct CSS snippets that perform conditional
requests and allow fingerprinting for all extensions. In two
cases, we can leverage simple CSS selectors as the extensions
modify the DOM. One extension, e.g., adds a class name to an
existing HTML element of the DOM. In one case, we leverage
our container-query-based approach to detect the presence of
a stylesheet that modifies the font family for certain elements.
Another case leverages the behavior that background images
of elements with display set to none are not fetched.
For the remaining cases, we use container queries to detect
modifications to the element width.

For example, we provide a CSS snippet that can detect the
media-blocking functionality of the popular NoScript exten-
sion using a simple CSS selector. In place of the original
media element (e.g., <audio>), the extension places an <a>
tag with a hyperlink reference to the remote file. This tag has a
unique class name, __NoScript_PlaceHolder__, which
we can target using a class name CSS selector that triggers a
request as described in Section III-E. Note that the approach
would also work without this class name, as we could also
leverage relative selectors (e.g., the child selector) or measure
the width of the element using container queries.

VII. CASE STUDY: BROWSER FINGERPRINTING

In this section, we evaluate the combination of our novel
fingerprinting techniques on the 1176 browser and operating-
system combination pairs described in Section IV-C. We fur-
ther show that our techniques work reliably under the highest
security setting of the NoScript extension, also used by the Tor
browser. At the highest security setting, the extension blocks
the execution of JavaScript and plugin objects (e.g., Adobe
Flash). In addition, the loading of HTML5 audio, HTML5
videos, subdocuments (e.g., iframes), Web fonts, the content
of <noscript> tags, and any request to the local network are
prevented [48]. This security setting also blocks all requests
where the browser is not able to identify the request type.
Lastly, it also includes a mitigation (restricted CSS) against
CSS PP0 [49], which prefetches DNS records to prevent
the DNS-based exfiltration technique. Similar restrictions are
applied in the context of HTML emails.

We evaluate how well our techniques infer implementa-
tion specifics of calc() functions, available fonts, and the
computed styles of all standard HTML elements. We exclude
the Brave browser when comparing the font-based finger-
printing due to the randomness-based mitigation described
in Section IV-A. While custom fonts installed on a system
reveal additional information, we evaluate our techniques on
fresh installs of the operating system to concretely identify
the information leakage source. Hence, this acts as a lower
bound on the fingerprinting capabilities of our techniques.
While viewport dimensions can be used for fingerprinting,
their values can easily change during a user session, e.g., by
maximizing the browser window. We exclude these features
from our evaluation for a more stable fingerprint.

Overall, out of the 1176 combinations in our evaluation, we
can distinguish 1152 of them (i.e., 97.95%). The combination
of our novel techniques can generally distinguish all operating
systems included in our evaluation, including the Tor browser
with NoScript, both configured to the highest security level.
The only exception here is the Brave browser on Windows 11,
which is indistinguishable from Google Chrome on Windows
10. Within an operating system, our techniques can distinguish
the major browser engines, i.e., Blink (Chromium), Gecko
(Mozilla), and WebKit (Apple). The only exception is Apple
iOS, where all browsers are restricted to using the same
WebKit engine. Note that this is subject to change with iOS
17.4 [50]. Distinguishing browsers using the same engine is
often possible due to the usage of different engine versions
and the browser’s individual customization. For example, the
Ghostery browser ships with a different version of the font
Twemoji Mozilla, a fallback emoji font of Firefox.

VIII. EMAIL CLIENT FINGERPRINTING

In this section, we show that our techniques can be applied
in highly restricted environments, such as emails. Emails do
not allow scripting languages, such as JavaScript, and typically
block iframes, thus preventing the technique proposed by
Lin et al. [22]. Email client fingerprinting introduces some
interesting scenarios that differ from browser fingerprinting.
Attacks might aim to link the web sessions of a visitor to their
email account or identify all email addresses belonging to a
user, which we refer to as Email Address Linking. This threat
vector is similar to Session Linking on the Web [6]. Possible
targets include email aliases, throwaway email addresses, and
deanonymizing subscribers of mailing lists. Such information
can be particularly valuable for spearphishing campaigns. Our
techniques can also be used as a security measure to detect
compromised email addresses or the leakage of email contents,
both via email forwarding and printing of emails.

We investigate the HTML and CSS feature set supported by
21 email clients across different platforms (cf. Section VIII-B).
Our analysis shows that 9 email clients allow all our techniques
for email client fingerprinting while 18 expose at least one
fingerprinting vector. As the subset of supported CSS features
differs heavily among email clients, we showcase different
ways to track users in 2 case studies (cf. Section VIII-C).

A. The State of Rendering Engines in Email Clients

Generally, email clients use rendering engines that are
based on those used in web browsers such that CSS-based
fingerprinting also applies to email clients. For web clients,
such as Gmail, this is trivially the rendering engine of the
browser. Native desktop clients often use a rendering engine
provided by the operating system, or by a different application
on the system. For example, on Windows systems, the Outlook
2007 desktop client uses the Word rendering engine [51].
On iOS and macOS, the Apple Mail client uses the WebKit
engine [52]. Similarly, mobile clients often use, or even are
forced to use, the rendering engine provided by the operating

10

system via a WebView component. Here, the Android We-
bView component uses the Blink engine [53], while the iOS
WebView component uses the WebKit engine [54].

Alternatively, some clients ship with a rendering engine.
For example, Mozilla Thunderbird uses the Gecko engine [55]
which is also used by the Firefox browser. Also, the KMail
client for KDE uses Chromium via the QtWebEngine [56].

B. Analysis of Email Client Features

We analyze 21 different mail clients for their supported
HTML and CSS feature sets. The tested clients include web,
desktop, and mobile clients. Our findings show that many of
the previously discussed CSS features are supported by email
clients, making email client fingerprinting a realistic threat.

1) Methodology: We develop a set of test cases that cover
the full range of CSS features applicable to fingerprinting, as
well as the features required to exfiltrate the information via
HTTP requests. Our test cases test the three major at-rules
@media, @supports, and @container that are useful
for fingerprinting. For media queries, we have a distinct test
case for every type of media query. In addition, we check
for the implementation of additional at-rules, such as the
@font-face and @import rules. The @font-face rule
has been the most prominent method for font fingerprinting,
while @import can be used recursively to load CSS, poten-
tially circumventing filters.

We consider style tags and external CSS via the <link>
element, both in the head and body of the email. In addition,
we test for restrictions on style attributes of HTML elements
and the srcset and sizes attributes of the tag. The
latter may be used as a replacement for media queries. Some
email clients allow using <link> tags to include external
CSS or even the @import rule; we recursively check if the
same constraints are applied to external stylesheets.

We further check for email clients that unconditionally load
all remote resources. To do so, we have a test case containing
two media queries with mutually exclusive conditions. A client
that respects the conditions loads one of these resources, while
a client that unconditionally prefetches all resources loads
both. To also detect the fetching of resources before the email
is opened, we rerun test cases without opening the email. We
also log the user agent header and the IP address of incoming
requests to check for the usage of a proxy service.

2) Results: We analyze 21 different email clients. For a
detailed list of clients and their versions, we refer to Table VI
in the appendix. Our analysis shows that 17 (81%) of the
clients fetch remote resources without requiring any user inter-
action. Only SOGo, RoundCube, Thunderbird, and Apple Mail
(Desktop) require user interaction by default before remote
resources are fetched. Moreover, the commercial clients GMX
(Web/Android/iOS), and Samsung Email do not use a proxy
for fetching remote resources, leaking at least the IP address
and user agent. For Outlook (Web/Desktop/Android/iOS), this
depends on the configuration of the server and user. The
open-source clients SOGo and RoundCube do not employ a
proxy either, although it can be added to RoundCube via a

plugin [57]. Despite its general intentions to stop JavaScript
execution, we found that the Android application “Samsung
Email” allows an HTML email to include iframes that leverage
JavaScript. As such, the client permits leveraging state-of-
the-art JavaScript-based fingerprinting techniques and does
not constitute a restricted context. Thus, we reported the
vulnerability to Samsung, and excluded the app from the
following statistics.
13 clients support executing more than 90% of media

queries. 9 clients support container queries and allow media
queries containing the calc function. Nevertheless, one of
these 9 clients, namely ProtonMail, prevents the exfiltration
of information such that we deem it not fingerprintable. The
remaining 8 clients support more than 75% of HTML that
we can leverage for property fingerprinting as described in
Section IV-A. This includes the support for HTML elements
such as <input type="file">, which has been shown
to feature good fingerprinting capabilities [22]. Our container-
based technique (cf. Section IV-A) can be applied to 8 clients,
allowing, e.g., fingerprint the font set, operating system, and
default styles. 4 clients do not require any user interaction:
Apple Mail on iOS and the iCloud Web client, and GMX on
Android and iOS. Note that no evaluated client allows loading
remote iframes, thus preventing the fingerprinting techniques
presented in prior work [22]. On 40% of the tested clients, i.e.,
8 clients, all techniques proposed in this paper can be applied
to fingerprint clients. Table II summarizes our findings. For
Microsoft’s Outlook, the proxy behavior depends on the server
and user configuration [58].

A limitation of email client fingerprinting is the blocking
of remote content. As shown by prior work, remote-content
blocking is difficult due to the complexity of modern HMTL
and CSS [59]. Further, the statements provided by many email
clients may mislead users into underestimating the privacy
implications of remote content, especially with the adoption
of proxy services that eliminate many privacy risks [33].

3) Fingerprinting Framework Comparison: In the follow-
ing, we compare the ability of different CSS-based finger-
printing frameworks to be leveraged for Email Client Fin-
gerprinting. The comparison of their techiques is tabularized
in Table III. For this, we have selected relevant candidates
from academia [22], [30], hobbyists [60] and industry [61].
As none of these candidates discusses or evaluates the use in
the email scenario, we evaluate their applicability. Note that
we ignore information collected via the User-Agent header,
as our analysis has shown that remote resources are usually
loaded by a proxy service. Table II shows which clients use a
proxy service to load remote resources, but are fingerprintable
using our techniques.

We notice that the general approach is to collect all infor-
mation available via media queries. This carries information
about the screen size, color support, and user preferences. In
addition, all frameworks query feature support to determine
the browser. Here, Takei et al. leverage non-standardized CSS
properties that accept URL arguments, while all remaining
leverage 4 @supports queries. Second, font fingerprinting

11

TABLE II: Support of the container queries CSS feature
by tested email clients. indicates that the remote-content
loading requires user interaction. In the case of ProtonMail,
exfiltration is prevented using unconditional preloading, which
we denote by . * means that the proxy of Outlook depends
on the server and user configuration.

Client Type Proxy @container

iCloud Web ✓
RoundCube Web
SOGo Web
ProtonMail Web ✓
AOL Web ✓
Yahoo Web ✓
Outlook Web *
Gmail Web ✓
GMX Web
Thunderbird Desktop
Apple Mail Desktop ✓
Outlook Desktop *
Windows Mail Desktop
GMX Android
Outlook Android *
Gmail Android ✓
Apple Mail iOS ✓
GMX iOS
Outlook iOS *
Gmail iOS ✓

is usually conducted using the @font-face rule with the
exception being Lin et al. , which leverage a combination of
@font-face and their iframe-based techique.

We identify 14 features that can be fingerprinted in email
clients. In contrast, the sophisticated techiques by Lin et al.
are largely restricted to the Web setting, due to their use of
iframes, leaving only 7 features that could theoretically work
in email clients.

C. Case Studies

In this section, we present 2 case studies that highlight how
certain fingerprinting techniques apply to email clients (cf.
Section VIII-C1), creating new threats (cf. Section VIII-C2).

1) Case Study: Applying Browser Fingerprinting to Email
Clients: We demonstrate that leveraging techniques for
browser fingerprinting can be used in email clients.
Font Fingerprinting. As a first demonstration, we detect
installations of Microsoft Office from Apple iCloud Mail
using our container-query-based font fingerprinting technique.
Detecting if Microsoft Office is installed is, e.g., relevant for
CVE-2017-0199 that exploits the Windows HTML Applica-
tion Handler using a malicious Office RTF document to gain
arbitrary code execution without user interaction [62]. The
vulnerability was among the most exploited vulnerabilities in
2022 [63]. Detecting an Office installation using our technique
even works in the Tor browser using the Gill Sans font due

1 #container {
2 container-type: inline-size;
3 width: calc(...);
4 }
5 @container not (width: 293694.0625px) {
6 body {
7 background-image: url(/not-windows);
8 }
9 }

10 @container (width: 293694.0625px) {
11 body {
12 background-image: url(/windows);
13 }
14 }

Listing 3: A CSS snippet that leverages the calc() expers-
sion in order to distinguish Windows 10 and 11 from other
operating systems when using Mozilla Thunderbird.

to an incomplete mitigation (Section IV-C). For our proof-of-
concept, we leverage a container query that detects if the font
Leelawadee is installed. As this font is a non-free Microsoft
font for the Thai Language, we do not expect users without
Microsoft Office to have it installed [64].
OS Fingerprinting. As a second demonstration, we remotely
leak the OS via fingerprinting on Mozilla Thunderbird. The
email leverages a calc() expression that results in a different
result on Windows than on Linux or macOS systems. Since
Mozilla Thunderbird is based on the same Gecko engine as
used in Firefox, we can leverage an expression that evaluates
to a different result depending on the OS when using Firefox
115 ESR. Interestingly, while the expression also evaluates
to different results depending on the OS in Thunderbird,
those results are also different from the results produced
by Firefox ESR. As such, we are able to distinguish not
only the OS from Thunderbird but also Thunderbird from
Firefox. Listing 3 provides an example of a CSS snippet
that is capable of distinguishing Windows 10 and 11, from
other operating systems when using the Desktop Client of
Mozilla’s Thunderbird. Only the URLs have to be modified
to point to a remote server. It leverages a calc() expression
that was left out of the listing due to its complexity. In total
the expression features 5 function calls, 3 constants and 22
arithmetic operations.

2) Case Study: Email-specific Threat Vectors: As a second
case study, we demonstrate threat vectors specific to the
context of email-client fingerprinting.
Bypassing Blocklists. Our test suite detects 2 clients where
externally loaded CSS is not subject to the same constraints
as inline styles. According to our tests, this affects Mozilla
Thunderbird and Alinto SOGo. With both clients, external CSS
can use container queries while they are removed from inline
styles. This even works with data URLs, circumventing the
need for the user to allow loading remote content explicitly.
Thunderbird still requires the user’s consent for any requests
issued by CSS, as long as this is not generally allowed in the
Thunderbird settings.

12

TABLE III: Features that can be identified using the techniques of CSS fingerprinting frameworks from Takei et al. [30],
Lin et al. [22], csstracking.dev [60], and No-JS fingerprinting by the maintainers of FingerprintJS [61]. We denote
features that work on all discussed user agents by , whereas features that only work on a subset of user agents are denoted
by . Features that would theoretically work on a subset of clients but were not discussed by the respective works are denoted
by . Features that can only distinguish some instances of a class are denoted by .

Feature
Environment

Web Email

[30] [60] [61] [22] Ours [30] [60] [61] [22] Ours

S
Y

S
T

E
M Browser

Browser Major Version
Operating System

H
A

R
D

W
A

R
E Screen Resolution

Screen Geometry
Color Support
Architecture

U
S

E
R

Client Language
Installed Fonts
Font Preferences
User Preferences

P
L

U
G

IN
S AdBlocker Identification

Extension Identification
Translation Identification

In the case of SOGo, using the @import rule to load ex-
ternal CSS does not only circumvent the restrictions imposed
on the allowed styles but also breaks email isolation. SOGo
restricts the styles of an email to only the context of that email
using a technique known as namespacing [65] in combination
with filtering the stylesheets. They prepend a unique identifier
to every class name or identifier in the HTML or CSS. The
same procedure is not applied to external stylesheets included
from a remote server. This allows for performing an attack
known as Blind CSS Data Exfiltration [66]. In the case of
SOGo, this allows exfiltrating the subjects of other emails in
a victim’s inbox. Our findings were acknowledged by Alinto
and received CVE-2024-24510. The issue has since been fixed
in SOGo Version 5.9.1.20240124-1.

Print Detection. Using @media print, the sender of an
email may set up a notification mechanism for if and when
an email is printed. Benign usage of this rule ensures that
a document is optimized for printing (e.g., large background
images are removed). However, this rule also allows loading
remote content upon initiating the print dialog from the
browser.

Forward Detection. The supported CSS features of an email
client often directly reveal the email client used to open an
email. This technique can detect if an email is forwarded to or
opened by a different client. Further, even if the client remains
the same, a difference in the CSS fingerprint of the client
opening the email may indicate either a compromise of an
email account or the forwarding of the email to an unintended

recipient. The fingerprint could even be leveraged directly in
the email to obfuscate the content if forwarded.
Conditional Content. Instead of fingerprinting, our tech-
niques can be exploited without an exfiltration step, e.g., in
spearphishing campaigns. For example, detecting the OS al-
lows dynamically displaying links that lead to exploits for that
particular system. It enables attackers to customize and conceal
their attack based on the detected environment, increasing the
success rate of their exploits.

IX. MITIGATING CSS-BASED FINGERPRINTING

In this section, we propose approaches for mitigating CSS-
based fingerprinting. We demonstrate a browser-based mitiga-
tion that prevents data exfiltration via CSS-initiated requests.
Additionally, we propose email-client-specific mitigations that
are not limited by a standard on HTML emails and can,
therefore, use different mitigation strategies.

A. Unconditional Preloading

Exfiltrating information obtained from conditionals via
HTTP is a crucial step in CSS-based fingerprinting, as the
threat model assumes no client-side scripting capabilities (cf.
Section III-A). As our results show, there are numerous ways
of obtaining information with modern CSS. However, the
methods for exfiltration are limited (Section III-E). Thus,
we propose a mitigation that completely removes conditional
CSS-initiated HTTP requests. The general idea is to preload
all resources that are referenced in the CSS of a site. As
such, the computed styles are still conditional, while the HTTP

13

requests prevent the exfiltration of these conditions to a remote
server. We implement a proof-of-concept as an extension
for Mozilla Firefox. The extension checks for occurrences
of the url(), image(), or image-set() functions in
external stylesheets, inline styles, and style attributes. For
every identified URL, the extension injects a hidden image
into the DOM that fetches the identified resource. As such,
every remote resource is requested unconditionally, and later
requests are served from the HTTP cache of the browser. Note
that our mitigation does not account for client-side scripting
due to the restrictive threat model. JavaScript could circumvent
our mitigations by injecting stylesheets at runtime.
Overhead. We evaluate our extension on the Tranco Top 200
reachable sites [24] to showcase that it presents an acceptable
performance trade-off to increase a user’s privacy. In our
dataset, the median number of requests a site makes is 57.
Our mitigation adds 17 additional requests to the median, an
overhead of less than 30%. This corresponds to an increase
in the accumulated response body sizes of 225 kB. Note that
our naı̈ve approach may also induce false positive preloading,
e.g., URLs contained in comments.

B. Email Privacy Proxy

Further, we introduce a proxy service that rewrites emails to
enhance the recipient’s privacy and the integrity of the email
regarding its consistency across email clients. The proxy has
two distinct mechanisms that each achieve a different goal. The
first mechanism rewrites top-level CSS rules that are defined
by <link> or <style> elements to style attributes. The
second mechanism is rewriting remote resources to be included
directly in the email via data URLs.
Style Attributes. Rewriting the CSS defined in an HTML
email is a significant step in reducing the vast majority of
the fingerprinting surface available to emails. This is because
at-rules may only be defined by top-level stylesheets, thereby
eliminating a major avenue for potential fingerprinting. Our
investigation of state-of-the-art fingerprinting has shown the
importance of at-rules for CSS-based fingerprinting as almost
all techniques use at least one at-rule (e.g., @font-face).

In addition, as underlined by our investigation, style at-
tributes are widely supported among email clients. In addition,
the use of style attributes carries certain advantages. For
example, it prevents the styles defined by the email author
from conflicting with stylesheets defined by the client. This
is due to style attributes always taking precedence over other
stylesheets. Further, it confines the styles of the email to the
email itself, as style attributes provide no means to define
styles that apply to parent or sibling elements in the DOM.
As such, style attributes provide the smallest risk of the same
email appearing different when opened using different email
clients. It also prevents conflicting styles between different
parts of a multipart email (e.g., original emails attached to a
response).
Rewriting URLs. The rewriting of remote resources to data
URLs serves two purposes. First, it eliminates the exfiltration
of fingerprints and undermines the functionality of tracking

pixels. Second, it additionally strengthens the integrity of the
email since remote resources could be modified or removed
at a later point in time, thus making the same email appear
different at two different points in time. This further allows for
the proper archiving of emails without encountering references
to remote resources that are no longer available.
Proof-of-Concept & Overhead. We implement a proof-of-
concept using Python that takes a .eml file as input. First, we
rewrite stylesheets to style attributes using the PyPi package
css-inline [67]. Second, we perform the inlining of re-
mote images as data URLs for tags and images defined
via the CSS property background-image. Other remote
resources occur less frequently and are thus excluded in our
proof-of-concept. However, they may be added analogously.
We evaluate the overhead on 200 HTML email newsletters
from well-known brands received in 2022. On our dataset,
the overall size increases from 13MB to 159MB. The linear
processing approach takes about 11min, out of which the most
time is spent fetching remote stylesheets and images. Note
that the service is only relevant for HTML emails and thus
introduces no overhead for plaintext emails.

C. Other Email-specific Mitigations

Preloading can also be used for emails. In fact, the
email server of ProtonMail unconditionally fetches all remote
sources when receiving an email and rewrites the URLs to an
internal one. Thus, leakage from CSS cannot be exfiltrated.
Still, unlike web browsers, there is no fixed standard for CSS
and HTML in email clients, enabling other mitigations.
Preventing Requests. While blocking only CSS features
usable for fingerprinting seems infeasible, preventing remote
requests is a viable option. A widely-implemented variant,
e.g., in Mozilla Thunderbird, requires user permission to
load remote content. However, this shifts the decision to the
user, who might not grasp the consequences of granting the
permission. Alternatively, fully disallowing the inclusion of
remote content also mitigates the exfiltration channel.

While many commercial clients, such as GMail, implement
a proxy to fetch remote content, this is not sufficient to prevent
our techniques. It only stops leakage of the privacy-relevant
headers and the IP [33], while the request is still conditional.
Restricting CSS. Mitigations can restrict CSS to a subset that
is not usable for fingerprinting. As we see in our analysis, there
are restrictive email clients, such as AOL or Yahoo Mail, that
only support a small subset of CSS deemed safe. However,
restricting CSS is prone to errors, as shown for the SOGo
webmail client (cf. Section VIII-C2).

X. DISCUSSION

In this section, we discuss privacy considerations of the
W3C and the outlook if the proposals continue to be imple-
mented (Section X-A), as well as related work (Section X-B).

A. Privacy Considerations

Overall, most of our findings are not adequately captured by
the privacy concerns of the corresponding W3C specifications.

14

For example, the specification of container queries does not
state any privacy considerations [37], [68]. Our research shows
that container queries increase the capabilities of media queries
and allow accurate font fingerprinting. While the privacy
considerations of the CSS Fonts Module discuss font fin-
gerprinting in the context of the @font-face rule [69], the
discussion is restricted to loading remote fonts. However, our
novel font fingerprinting technique via container queries does
not require the loading of remote fonts (cf. Section IV-A).
For the @supports rule, the standard mentions its potential
for fingerprinting [70], but downplays the significance as this
information is exposed through a variety of other vectors.
However, especially in restricted scenarios, this function may
be the only one available. Lastly, while the specification
introducing the @import rule expands on concerns regarding
the threat model of the Same-Origin Policy [71], it does not
discuss the implications of recursive inclusions on sanitization.
Our work asks for better scrutiny when assessing the privacy
impact in formal specifications.

Unfortunately, the threat surface increases further if
browsers continue to adapt more specified features. One such
example is that implementations of container queries might
extend to a generic method of querying the computed styles
of HTML elements, not just their dimensions. Our technique
would then provide a generic way to replace the JavaScript
API getComputedStyle and thus enable full browser
extension fingerprinting as described by Laperdrix et al. [14].

B. Related Work

Various browser fingerprinting techniques have emerged
that collect browser- or device-specific information for iden-
tification, improving security, or enhancing the user expe-
rience [7], [14], [15], [17], [20]. While different proposals
exist to mitigate fingerprinting [72]–[81], the abundance of
fingerprinting techniques has demonstrated that the only fully
effective mitigation is the disabling of client-side scripting.

Early work on CSS-based browser fingerprinting has lever-
aged CSS properties unique to a specific browser, such
as prefixed properties using -webkit-* or -moz-* [82].
Further, Takei et al. [30] collected information about the
screen and installed fonts using @media and @font-face.
Fifield et al. [11] expanded on the analysis of font rendering
for fingerprinting and found that the glyph bounding boxes of
Unicode characters can often uniquely identify a user. Lin et al.
[22] proposed an iframe-based technique for fingerprinting
the size of HTML elements without using JavaScript. This
approach can determine the bounding boxes of glyphs, which
have been shown to provide an adequate fingerprinting surface.

While previous work has manually found CSS functionality
to fingerprint, we systematically analyze and uncover a large
set of dynamic CSS functionality. Our work expands on
the general area of CSS-based fingerprinting by introducing
novel techniques with fewer requirements that work in more
restrictive settings (i.e., HTML emails), defeating existing spot
mitigations (i.e., blocking subdocuments [28]).

We show that existing fingerprinting techniques that rely on
JavaScript also work without such capabilities. As such, we
build on the work by Laperdrix et al. [14] that identified almost
4500 extensions in the Chrome Webstore that are fingerprint-
able by the stylesheets they inject into the context of sites. We
show that in many cases, extensions can be fingerprinted from
CSS alone, allowing fingerprinting in restricted settings such
as the Tor browser or even email clients.

Previous work used the JavaScript Math object for finger-
printing [83]. They leverage platform-dependent differences
in the computed results of trigonometric functions (e.g.,
Math.sin()) to identify the operating system from Firefox
and distinguish Chrome and Firefox on Windows, Linux, and
Android [83]. The approach is, however, not generally able to
differentiate browser versions or the OS from a Chromium-
based browser in addition to requiring JavaScript.

Prior work on the privacy implications of email tracking
has identified various risks that have led to the large-scale
adoption of remote-content proxying [33], [84]. Widespread
privacy risks were introduced mainly by leaking information to
third parties via headers, e.g., Referer, or even directly via
the URL [33]. Additionally, third-party cookies allow tracking
of users similar to Web tracking [1], [2].

XI. CONCLUSION

This paper shows the growing challenges in preventing
browser fingerprinting due to the evolving complexity of web
standards. Our research shows that modern CSS is potent
enough to provide fingerprinting without JavaScript. Based on
fuzzing and templating, we uncovered innovative techniques,
exploiting nuances in container queries, evaluation of arith-
metic expressions, and complex selectors to infer browser and
OS configurations. We demonstrated the applicability to the
highly restrictive setting of HTML emails, expanding the scope
of tracking beyond browsers. We propose a comprehensive
mitigation for existing and future CSS-based fingerprinting
relying on preloading conditional resources. Our work under-
scores the need for defenses against tracking methods.

ACKNOWLEDGMENT

We want to thank our anonymous reviewers for their com-
ments and suggestions. This work has been supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 491039149. This work was also partly supported
by the Semiconductor Research Corporation (SRC) Hardware
Security Program (HWS). We also want to thank Simon
Einzinger for helping with some experiments. We further thank
the Saarbrücken Graduate School of Computer Science for
their funding and support.

REFERENCES

[1] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan, “An empirical
study of web cookies,” in WWW, 2016.

[2] M. W. Docs, “Using HTTP cookies,” 2023. [Online]. Available:
{https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies}

[3] J. Schuh, “Building a more private web: A path towards making
third party cookies obsolete ,” 2020. [Online]. Available: {https://blog.
chromium.org/2020/01/building-more-private-web-path-towards.html}

15

[4] Google, “Third-party cookie deprecation,” 2023. [Online]. Available:
{https://developers.google.com/privacy-sandbox/3pcd}

[5] ——, “Topics API overview,” 2022. [Online]. Available: {https:
//developers.google.com/privacy-sandbox/relevance/topics}

[6] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser finger-
printing: A survey,” in ACM Transactions on the Web, 2020.

[7] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in S&P, 2016.

[8] Fingerprint, “Case Studies,” 2024. [Online]. Available: {https://
fingerprint.com/case-studies/}

[9] FingerprintJS, “FingerprintJS,” 2024. [Online]. Available: {https:
//github.com/fingerprintjs/fingerprintjs}

[10] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in Security and privacy (SP), 2013.

[11] Fifield, David and Egelman, Serge, “Fingerprinting web users through
font metrics,” in FC, 2015.

[12] J. R. Mayer, “Any person... a pamphleteer”: Internet anonymity in the
age of web 2.0,” Undergraduate Senior Thesis, Princeton University,
2009.

[13] P. Eckersley, “How unique is your web browser?” in PETS, 2010.
[14] P. Laperdrix, O. Starov, Q. Chen, A. Kapravelos, and N. Nikiforakis,

“Fingerprinting in style: Detecting browser extensions via injected style
sheets,” in USENIX Security Symposium, 2021.

[15] K. Mowery and H. Shacham, “Pixel Perfect: Fingerprinting Canvas in
HTML5,” in W2SP, 2012.

[16] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in CCS, 2014.

[17] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
information in JavaScript implementations,” in W2SP, 2011.

[18] M. Schwarz, F. Lackner, and D. Gruss, “JavaScript Template Attacks:
Automatically Inferring Host Information for Targeted Exploits,” in
NDSS, 2019.

[19] T. Laor, N. Mehanna, A. Durey, V. Dyadyuk, P. Laperdrix, C. Maurice,
Y. Oren, R. Rouvoy, W. Rudametkin, and Y. Yarom, “Drawnapart: A
device identification technique based on remote gpu fingerprinting,” in
Network and Distributed System Security Symposium, 2022.

[20] L. Trampert, C. Rossow, and M. Schwarz, “Browser-based CPU Finger-
printing,” in ESORICS, 2022.

[21] T. Rokicki, C. Maurice, and M. Schwarz, “CPU Port Contention Without
SMT,” in ESORICS, 2022.

[22] X. Lin, F. Araujo, T. Taylor, J. Jang, and J. Polakis, “Fashion faux pas:
Implicit stylistic fingerprints for bypassing browsers’ anti-fingerprinting
defenses,” in IEEE S&P, 2023.

[23] M. W. Docs, “¡frame¿,” 2023. [Online]. Available: {https://developer.
mozilla.org/en-US/docs/Web/HTML/Element/frame}

[24] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in NDSS, 2018.

[25] M. W. Docs, “CSS: Cascading Style Sheets,” 2023. [Online]. Available:
{https://developer.mozilla.org/en-US/docs/Web/CSS}

[26] ——, “CSS media queries,” 2023. [Online]. Available: {https:
//developer.mozilla.org/en-US/docs/Web/CSS/CSS media queries}

[27] Google, “Third-party cookie deprecation,” 2023. [Online]. Avail-
able: {https://blog.google/products/chrome/privacy-sandbox-tracking-
protection/}

[28] Giorgio Maone, “NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience!” July 2017. [Online]. Available: https://noscript.net

[29] T. T. Project, “The Design and Implementation of the Tor Browser,”
2019. [Online]. Available: {https://2019.www.torproject.org/projects/
torbrowser/design/}

[30] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web browser finger-
printing using only cascading style sheets,” in International Conference
on Broad-Band Wireless Computing, Communication and Applications,
BWCCA, 2015.

[31] T. T. Project, “Letterboxing,” 2023. [Online]. Available: {https:
//support.torproject.org/tbb/maximized-torbrowser-window/}

[32] B. Software, “Protecting against browser-language fingerprinting
,” 2022. [Online]. Available: {https://brave.com/privacy-updates/17-
language-fingerprinting/}

[33] S. Englehardt, J. Han, and A. Narayanan, “I never signed up for this!
Privacy implications of email tracking.” Proc. Priv. Enhancing Technol.,
2018.

[34] DuckDuckGo, “DuckDuckGo Email Protection,” 2024. [On-
line]. Available: {https://duckduckgo.com/duckduckgo-help-pages/
email-protection/what-is-duckduckgo-email-protection/}

[35] M. W. Docs, “CSS at-rules,” 2023. [Online]. Available: {https:
//developer.mozilla.org/en-US/docs/Web/CSS/At-rule}

[36] ——, “CSS value functions,” 2023. [Online]. Available: {https:
//developer.mozilla.org/en-US/docs/Web/CSS/CSS Functions}

[37] W. W. W. Consortium, “CSS Containment Module Level 3,” 2022.
[Online]. Available: {https://www.w3.org/TR/css-contain-3/}

[38] ——, “CSS Values and Units Module Level 4,” 2023. [Online].
Available: {https://www.w3.org/TR/css-values-4/#math}

[39] Stetic, “Browser Statistics,” 2024. [Online]. Available: {https://www.
stetic.com/market-share/browser/}

[40] Microsoft, “Windows 11 font list,” 2022. [Online]. Available: {https:
//learn.microsoft.com/en-us/typography/fonts/windows 11 font list}

[41] Wikipedia, “List of typefaces included with macOS,” 2023.
[Online]. Available: {https://en.wikipedia.org/wiki/List of typefaces
included with macOS}

[42] FingerprintJS, “Font List for Fingerprinting,” 2023. [Online].
Available: {https://github.com/fingerprintjs/fingerprintjs/blob/master/src/
sources/fonts.ts}

[43] Microsoft, “Gill Sans MT font family,” 2022. [Online]. Available:
{https://learn.microsoft.com/en-us/typography/font-list/gill-sans-mt}

[44] BugZilla, “Gill Sans font displays incorrectly when using DirectWrite
/ Direct2D,” 2010. [Online]. Available: {https://bugzilla.mozilla.org/
show bug.cgi?id=551313}

[45] M. on Github, “@mdn/browser-compat-data,” 2023. [Online]. Available:
{https://github.com/mdn/browser-compat-data}

[46] W. W. W. Consortium, “CSS Environment Variables Module Level
1,” 2021. [Online]. Available: {https://drafts.csswg.org/css-env/#env-
function}

[47] Gartner, “iPhone unit shipments as share of global smartphone
shipments from 3rd quarter 2007 to 4th quarter 2023,” 2024.
[Online]. Available: {https://www.statista.com/statistics/216459/global-
market-share-of-apple-iphone/}

[48] I. Forums, “NoScript 11.3.3 Customization,” 2021. [Online]. Available:
{https://forums.informaction.com/viewtopic.php?p=103816}

[49] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+Probe 1, JavaScript 0: Overcoming Browser-based
Side-Channel Defenses,” in USENIX Security Symposium, 2021.

[50] Apple, “Using alternative browser engines in the European
Union,” 2024. [Online]. Available: {https://developer.apple.com/support/
alternative-browser-engines/}

[51] Microsoft, “Word 2007 HTML and CSS Rendering Capa-
bilities in Outlook 2007 (Part 1 of 2),” 2014. [Online].
Available: {https://learn.microsoft.com/en-us/previous-versions/office/
developer/office-2007/aa338201(v=office.12)}

[52] Apple, “WebKit - A fast, open source web browser engine.” 2024.
[Online]. Available: https://webkit.org/

[53] T. C. Project, “Android WebView,” 2024. [Online]. Available:
{https://www.chromium.org/developers/androidwebview/}

[54] Apple, “WKWebView - Documentation,” 2024. [Online]. Available:
{https://developer.apple.com/documentation/webkit/wkwebview}

[55] F. S. Docs, “Gecko,” 2024. [Online]. Available: {https://firefox-source-
docs.mozilla.org/overview/gecko.html}

[56] Q. Wiki, “QtWebEngine/ChromiumVersions,” 2024. [Online]. Available:
{https://wiki.qt.io/QtWebEngine/ChromiumVersions}

[57] evandrofisico, “RoundCube ImageProxy Plugin,” 2024. [Online].
Available: {https://github.com/evandrofisico/roundcube-imageproxy}

[58] Microsoft, “Outlook for iOS and Android in Exchange Online:
FAQ,” 2023. [Online]. Available: {https://learn.microsoft.com/en-
us/exchange/clients-and-mobile-in-exchange-online/outlook-for-ios-
and-android/outlook-for-ios-and-android-faq#q-does-outlook-for-ios-
and-android-support-proxy-configurations}

[59] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Fried-
berger, J. Somorovsky, and J. Schwenk, “Efail: Breaking S/MIME and
OpenPGP email encryption using exfiltration channels,” in USENIX
Security, 2018.

[60] O. Brotchie, “CSS Fingerprint,” 2024. [Online]. Available: {https:
//csstracking.dev/}

16

[61] Fingerprint, “No-JS fingerprinting,” 2024. [Online]. Available: {https:
//noscriptfingerprint.com/}

[62] U. N. V. D. N. (NIST), “CVE-2017-0199,” 2017. [Online]. Available:
{https://nvd.nist.gov/vuln/detail/CVE-2017-0199}

[63] U. C. . I. S. A. (CISA), “2022 Top Routinely Exploited
Vulnerabilities,” 2023. [Online]. Available: {https://www.cisa.gov/news-
events/cybersecurity-advisories/aa23-215a}

[64] Microsoft, “Leelawadee font family,” 2022. [Online]. Available:
{https://learn.microsoft.com/en-us/typography/font-list/leelawadee}

[65] W. W. W. Consortium, “Namespaces in XML 1.0 (Third Edition),”
2009. [Online]. Available: {https://www.w3.org/TR/REC-xml-names/}

[66] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk,
“Scriptless attacks: stealing the pie without touching the sill,” in CCS’12,
2012.

[67] D. Dygalo, “PyPi - css-inline,” 2024. [Online]. Available: {https:
//pypi.org/project/css-inline/}

[68] W. W. W. Consortium, “Media Queries Level 5,” 2021. [Online].
Available: {https://www.w3.org/TR/mediaqueries-5/}

[69] ——, “CSS Fonts Module Level 4,” 2023. [Online]. Available:
{https://drafts.csswg.org/css-fonts/}

[70] ——, “CSS Conditional Rules Module Level 4,” 2023. [Online].
Available: {https://drafts.csswg.org/css-conditional-4/}

[71] ——, “CSS Cascading and Inheritance Level 5,” 2023. [Online].
Available: {https://drafts.csswg.org/css-cascade-5/}

[72] C. F. Torres, H. Jonker, and S. Mauw, “FP-block: Usable web privacy
by controlling browser fingerprinting,” in ESORICS, 2015.

[73] A. Faiz Khademi, M. Zulkernine, and K. Weldemariam, “FPGuard:
Detection and prevention of browser fingerprinting,” in Data and Appli-
cations Security and Privacy XXIX, 2015.

[74] U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri, “Countering
browser fingerprinting techniques: Constructing a fake profile with
google chrome,” in NBiS, 2014.

[75] P. Baumann, S. Katzenbeisser, M. Stopczynski, and E. Tews, “Disguised
chromium browser: Robust browser, flash and canvas fingerprinting
protection,” in WPES, 2016.

[76] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving
fingerprinters with little white lies,” in WWW, 2015.

[77] P. Laperdrix, W. Rudametkin, and B. Baudry, “Mitigating browser
fingerprint tracking: multi-level reconfiguration and diversification,” in
SEAMS, 2015.

[78] P. Laperdrix, B. Baudry, and V. Mishra, “FPRandom: Randomizing core
browser objects to break advanced device fingerprinting techniques,” in
ESSoS, 2017.

[79] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld, “Latex
Gloves: Protecting Browser Extensions from Probing and Revelation
Attacks.” in NDSS, 2019.

[80] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé,
“Everyone is different: Client-side diversification for defending against
extension fingerprinting,” in USENIX Security, 2019.

[81] S. Wu, S. Li, Y. Cao, and N. Wang, “Rendered private: Making GLSL
execution uniform to prevent webgl-based browser fingerprinting,” in
USENIX Security Symposium, 2019.

[82] Unger, Thomas and Mulazzani, Martin and Frühwirt, Dominik and
Huber, Markus and Schrittwieser, Sebastian and Weippl, Edgar, “Shpf:
Enhancing http (s) session security with browser fingerprinting,” in
ARES, 2013.

[83] T. Saito, T. Noda, R. Hosoya, K. Tanabe, and Y. Saito, “On estimating
platforms of web user with javascript math object,” in Advances in
Network-Based Information Systems (NBiS), 2019.

[84] H. Xu, S. Hao, A. Sari, and H. Wang, “Privacy risk assessment on email
tracking,” in IEEE INFOCOM, 2018.

APPENDIX A

A. Browser Versions Used for Testing

Table IV describes the OS-browser combinations used in
our evaluation. All devices had all updates installed as of the
run of the evaluation on February 3, 2024.

B. Browser Extension Fingerprinting

Table V presents the browser extensions and their respective
identifiers in the Chrome Web Store used in our evaluation

TABLE IV: Tested operating systems and browser versions.
All browsers had the latest update available on Feb 3, 2024,
installed.

Operating System Version Browser Version

Windows 10 Google Chrome 121
Edge 121
Opera 106
Brave 1.62.156
Firefox 122
Tor 13.0.9
Ghostery 2023.10

Windows 11 Google Chrome 121
Edge 121
Opera 106
Brave 1.62.156
Firefox 122
Tor 13.0.9
Ghostery 2023.10

Ubuntu 22.04 LTS Google Chrome 121
Edge 121
Opera 106
Brave 1.62.153
Firefox 122
Tor 13.0.9
Ghostery 2023.10

macOS 14 Sonoma Google Chrome 121
Edge 121
Opera 106
Brave 1.62.156
Firefox 122
Tor 13.0.9
Ghostery 2023.10
Safari 17.2.1

ChromeOS 120 Google Chrome 120 (32-bit)
Opera 80.1
Brave 1.62.156
Firefox 122
Tor 13.0.9
Ghostery 1.0.2343

Android 14 Google Chrome 121
Edge 120
Opera 80.1
Brave 1.61.152
Firefox 122
Tor 13.0.9
Ghostery 2023.10

iOS 17.3 Google Chrome 121
Edge 121
Opera 4.5.0
Brave 1.61.1
Firefox 122
Ghostery 3.2
Safari 17.2.1

of browser extension fingerprinting (cf. Section VI-B2). In
addition, we display the number of active users of an extension

17

TABLE V: Browser extensions used in the extension fingerprinting evaluation.

Extension Name Extension ID Active Users

NoScript doojmbjmlfjjnbmnoijecmcbfeoakpjm 100 000+
TTSReaderX In-Page Text to Speech pakknklefcjdhejnffafpeelofiekebg 100 000+
Touch VPN bihmplhobchoageeokmgbdihknkjbknd 8 000 000+
AdBlocker by Trustnav dgbldpiollgaehnlegmfhioconikkjjh 300 000+
MozBar eakacpaijcpapndcfffdgphdiccmpknp 1 000 000+
Disconnect jeoacafpbcihiomhlakheieifhpjdfeo 600 000+
TripAdvisor Browser Button oiekdmlabennjdpgimlcpmphdjphlcha 80 000+
Awesome Screenshot: Screen Video Recorder nlipoenfbbikpbjkfpfillcgkoblgpmj 3 000 000+
Hunter: Find email addresses in seconds hgmhmanijnjhaffoampdlllchpolkdnj 600 000+
Screenshot reader enfolipbjmnmleonhhebhalojdpcpdoo 5 000 000+

TABLE VI: The set of email clients used for the email client
fingerprinting evaluation. For web-based email clients, we
show the browser and version, if available. For Desktop clients,
the version is displayed.

Client Client Type Browser/Client Version

Gmail Web Client in Chrome 120
AOL Web Client in Chrome 120
Outlook Web Client in Chrome 120
iCloud Web Client in Chrome 120
SOGo Web Client 5.9.0 in Chrome 120
RoundCube Web Client 1.6.5 in Chrome 120
Yahoo Web Client in Chrome 120
ProtonMail Web Client in Chrome 120
GMX.net Web Client in Chrome 120
Thunderbird Desktop Client 11.5.52
Outlook Desktop Client 20240126002.13
Apple Mail Desktop Client 16.0
Windows Mail Desktop Client 16005.14326.21788.0
Gmail Android Client 2023.11.26.586591930.Release
Outlook Android Client 4.2352.1
Samsung Email Android Client 6.1.90.16
GMX Android Client 7.41
Apple Mail iOS Client iOS 17.1.1
Outlook iOS Client 4.2401.0
Gmail iOS Client 6.0.231232.1785580
GMX iOS Client 9.2

as reported by the Chrome Web Store. The set of extensions
was highlighted in the artifacts of prior work [14].

C. Email Client Fingerprinting

Table VI showcases the email clients and their respective
versions used in our evaluation of email client fingerprinting.
All web clients were opened using the same instance of
Google’s Chrome Version 120 on Ubuntu 22.04 LTS.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

Our artifact contains several proof-of-concepts that demon-
strate the feasibility of the techniques described in the paper.
Further, the artifact contains the data we collected for the
evaluation of web browsers and email clients. The versions of
the web browsers are listed in Table IV in the Appendix of the
paper, while the versions of the email clients are listed in Table
V in the Appendix of the paper. For simple reproduction, we
provide our evaluation setup, data and scripts that aggregate
the differences between the web browsers. Lastly, we provide
our two proof-of-concept mitigations that can be used to
evaluate the overhead of such mitigations.

1) How to access: The artifact is publically available at
https://github.com/cispa/cascading-spy-sheets and citable via
the DOI https://doi.org/10.5281/zenodo.13712489.

2) Hardware dependencies: The artifact can be run on any
device that is capable of running a modern web browser.

3) Software dependencies: The techniques described in the
paper do not inherently require any software dependencies.
However, the artifact contains a set of proof-of-concepts
that are tailored to specific software environments. Thus, we
recommend running a Windows 11 and an Ubuntu 22.04 LTS
system with the latest version of Google Chrome, Firefox, and
the Tor Browser.

4) Benchmarks: None. The artifact is self-contained.

B. Artifact Installation & Configuration

The artifact does not require any complex installation or
configuration steps. All experiments are either self-contained
HTML/EML files or Python scripts. We have tested Python
scripts using Python 3.12.4, but any Python 3 version should
work. We provide requirements.txt files where necessary and
recommend using a virtual environment to install the depen-
dencies. Each proof-of-concept has to simply be opened in the
respective software environment.

C. Experiment Workflow

Our artifact features three distinct types of experiments.
The second type of experiment is the evaluation of the

fingerprinting surface of web browsers and the feature support
of email clients. These experiments correspond to Section VII
and Section VIII.A of the paper.

D. Major Claims

We make the following claims in our paper:
• (C1): CSS calc() expressions and container queries can

be used to fingerprint web browsers. The claim corre-
sponds to the experiments (E1).

• (C2): We can detect the presence of popular browser
extensions using only CSS. The claim corresponds to
experiment (E2).

• (C3): We can identify the target language of a translation
conducted using Google Translate as built into Google
Chrome. The claim corresponds to experiment (E3).

• (C4): We can identify more than 95% of browser/OS com-
binations using our fingerprinting techniques. The claim
corresponds to experiment (E4).

• (C5): Email clients can be fingerprinted based on the sup-
port of HTML and CSS features. The claim corresponds
to experiment (E5) and (E6).

• (C6): Our proof-of-concept mitigations can be used to
reduce the fingerprinting surface of web browsers. The
extension-based mitigation has a low overhead of less than
30% regarding the number of requests issued by a site.
The claim corresponds to experiment (E7). Meanwhile,
the email proxy adds a significant size overhead of more
than 1000% to HTML emails. The claim corresponds to
experiment (E8).

E. Evaluation

You can find more indepth instructions for each experiment
in the respective README files in the artifact. In partic-
ular, the section Reproduction Instructions in the top-level
README.

1) Experiment (E1): [calc() and @container Fingerprinting]
[15 human minutes]: The experiment shows that CSS calc
expressions and container queries can be used to fingerprint
web browsers. The experiment is designed for Firefox, the
Brave Browser and the Tor Browser.

[How to] Simply visit the provided HTML files with the
respective web browser/OS combination. The result is a visual
difference of the rendering of the HTML file.

Path: pocs/browser/
[Preparation] For preparation, either transfer the HTML

files to the respective environment (e.g., virtual machine) and
open the file locally or host the HTML files on a web server
and visit the URL with the respective web browser.

For convenience, we host the files on our server. Further
instructions are provided in the README of the repository.

[Execution] Simply visit the provided HTML files with the
respective web browser/OS combination.

[Results] The fingerprint is the visual difference of the ren-
dering of the HTML file which should be able to differentiate
between the web browser/OS combinations. The versions this
experiment was tested with are stated in the respective HTML
files.

2) Experiment (E2): [Extension Detection] [15 human min-
utes]: The experiment shows that popular browser extensions
can be detected using only CSS. The experiment is designed
for Google Chrome.

Path: pocs/extensions/
[How to] Simply visit the provided HTML files once

with the respective extension installed and enabled and once
without the extension installed and enabled. The result is a
visual difference of the rendering of the HTML file.

For convenience, we host the files on our server. Further
instructions are provided in the README of the repository.

[Results] The fingerprint is the visual difference of the
rendering of the HTML file which should be able to dif-
ferentiate between the presence and absence of an extension.

19

The versions this experiment was tested with are stated in the
respective README.

3) Experiment (E3): [Translation Detection] [15 human
minutes]: The experiment shows that we can identify a trans-
lation performed using Google Translate as built into Google
Chrome. The experiment is designed for Google Chrome.

Path: pocs/browser/poc_chrome_translate.html
[How to] Simply visit the provided HTML file with Google

Chrome. The result is a visual difference of the rendering of
the HTML file, when a translation is performed. Simply visit
the provided HTML files with the respective translation (i.e.,
English, German or Catalan).

[Results] The fingerprint is the visual difference of the ren-
dering of the HTML file which should be able to differentiate
between the different translation.

4) Experiment (E4): [Evaluation Browser/OS Combina-
tions] [10 human minutes]: The experiment shows that we
can distinguish more than 95% of browser/OS combinations.
It leverages the data collected using the Browser versions listed
in Table IV in the Appendix of the paper.

Path: evaluation/browser/generate_results
[How to] Simply run the Jupyter Notebook

Results.ipynb. It generates the fingerprint of each
browser/OS combination and generates a matrix of which
combinations can be distinguished.

[Results] The result shows that we can distinguish 1141
out of 1196 browser/OS combinations. Additional data can be
collected using the setup in evaluation/browser/ and
should not yield significantly different results (i.e., less than
90%).

5) Experiment (E5): [Evaluation Feature Support Email
Clients] [10 human minutes]: The experiment shows that 9
email clients allow all CSS features relevant to state-of-the-art
CSS-based fingerprinting.

Path: evaluation/email/
[How to] Simply run the Python script

gen_supported_features.py. It generates parts
of Table II in the paper.

[Results] The result shows that 9 email clients allow all CSS
features relevant to state-of-the-art CSS-based fingerprinting.

6) Experiment (E6): [Email Client Fingerprinting PoC] [15
human minutes]: The experiment shows that state-of-the-art
CSS-based fingerprinting can be applied to email clients.
For this, we provide a set of proof-of-concept emails that
demonstrates the feasibility of our techniques in some email
clients.

[How to] Simply visit the provided EML files with the
respective email client/OS combination. The result is a visual
difference of the rendering of the email.

Path: pocs/email/
[Preparation] For preparation, either transfer the EML files

to the respective environment (e.g., virtual machine) and open
the file locally or send the EML files to the respective email
client. For this, we provide a helper script (i.e., sender.py)

[Execution] Simply visit the provided EML files with the
respective email client/OS combination.

[Results] The fingerprint is the visual difference of the
rendering of the email which should be able to differentiate
between the email client/OS combinations.

7) Experiment (E7): [Extension Mitigation] [15 human
minutes]: The experiment corresponds to the evaluation of the
extension-based mitigation in Section IX.A of the paper.

[How to] The evaluation runs a crawl of the Tranco Top
50 reachable sites with and without the extension-based mit-
igation enabled. It aggregates network traffic statistics which
can be compared using a Python script. Instead of running
the crawl yourself, you may use the provided output of our
evaluation and simply recalculate the statistics.

Path: mitigation/browser/eval/
The README in the respective directory provides further

instructions.
[Results] The overhead of the extension-based mitigation

should be less than 30% regarding the number of requests
issued by a site. We expect no overhead greater than 50% on
a successful crawl.

8) Experiment (E8): [Email Mitigation] [15 human min-
utes]: The experiment corresponds to the evaluation of the
extension-based mitigation in Section IX.B of the paper.

[How to] The evaluation of the email privacy proxy runs
on a set of EML files.

Path: mitigation/email/
The README in the respective directory provides further

instructions.
[Preparation] First, export a set of emails from one of your

inboxes. The EML format is supported by a wide range of
clients. We recommend using Thunderbird.

[Execution] Next, run the provided script on the exported
files. The script will fetch all remote resources contained in
the files and inline them as data URLs. The output will be to
a new folder. Next, compare the sizes of the initial and the
output folder.

[Results] The size overhead of the email proxy is expected
to be large. It ranges between 100% and 2000% depending
on the source emails.

F. Customization

The data collection for the evaluation of web browsers and
email clients can be customized by adding additional web
browsers or email clients to the evaluation setup. Instructions
can be found in the respective directories.

20

